1
|
Kesikburun S, Uran Şan A, Yaşar E, Yılmaz B. The effect of high-frequency repetitive transcranial magnetic stimulation on motor recovery and gait parameters in chronic incomplete spinal cord injury: A randomized-controlled study. Turk J Phys Med Rehabil 2023; 69:275-285. [PMID: 37674795 PMCID: PMC10478546 DOI: 10.5606/tftrd.2023.11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/21/2022] [Indexed: 09/08/2023] Open
Abstract
Objectives This study aims to examine the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on gait parameters and lower extremity motor recovery in a more specific sample of individuals with chronic and traumatic incomplete spinal cord injury (iSCI). Patients and methods This double-blind, sham-controlled, randomized study included a total of 28 individuals (20 males, 8 females; mean age: 35.7±12.1 years; range, 18 to 45 years) with chronic (>1 year) traumatic iSCI. The participants were randomly allocated to either sham rTMS group (n=14) or real rTMS group (n=14). We compared the groups based on the lower extremity motor scores (LEMS), the temporal-spatial gait measurements using three-dimensional gait analysis, the Walking Index for SCI-II (WISCI-II), and 10-m walking test at baseline, three weeks (post-treatment) and five weeks (follow-up) after the treatment. Results The real rTMS group revealed a significant improvement in walking speed, LEMS score, and 10-m walking test after the treatment compared to baseline (p=0.001, p=0.002, and p=0.023, respectively). Changes in the LEMS score were significantly increased in the real rTMS group compared to the sham group at both three and five weeks (p=0.001 and p=0.001, respectively). No significant difference was observed in the other variables between the groups (p>0.05). Conclusion Our study findings support the therapeutic effectiveness of rTMS on motor recovery in chronic iSCI. The rTMS can be used as an adjuvant therapy to conventional physiotherapy in the rehabilitation of patients with iSCI.
Collapse
Affiliation(s)
- Serdar Kesikburun
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Gülhane Medical School, Gaziler Physical Therapy and Rehabilitation Training and Research Hospital, Ankara, Türkiye
| | - Ayça Uran Şan
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Gaziler Physical Therapy and Rehabilitation Training and Research Hospital, Ankara, Türkiye
| | - Evren Yaşar
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Gülhane Medical School, Gaziler Physical Therapy and Rehabilitation Training and Research Hospital, Ankara, Türkiye
| | - Bilge Yılmaz
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Gülhane Medical School, Gaziler Physical Therapy and Rehabilitation Training and Research Hospital, Ankara, Türkiye
| |
Collapse
|
2
|
Brihmat N, Allexandre D, Saleh S, Zhong J, Yue GH, Forrest GF. Stimulation Parameters Used During Repetitive Transcranial Magnetic Stimulation for Motor Recovery and Corticospinal Excitability Modulation in SCI: A Scoping Review. Front Hum Neurosci 2022; 16:800349. [PMID: 35463922 PMCID: PMC9033167 DOI: 10.3389/fnhum.2022.800349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
There is a growing interest in non-invasive stimulation interventions as treatment strategies to improve functional outcomes and recovery after spinal cord injury (SCI). Repetitive transcranial magnetic stimulation (rTMS) is a neuromodulatory intervention which has the potential to reinforce the residual spinal and supraspinal pathways and induce plasticity. Recent reviews have highlighted the therapeutic potential and the beneficial effects of rTMS on motor function, spasticity, and corticospinal excitability modulation in SCI individuals. For this scoping review, we focus on the stimulation parameters used in 20 rTMS protocols. We extracted the rTMS parameters from 16 published rTMS studies involving SCI individuals and were able to infer preliminary associations between specific parameters and the effects observed. Future investigations will need to consider timing, intervention duration and dosage (in terms of number of sessions and number of pulses) that may depend on the stage, the level, and the severity of the injury. There is a need for more real vs. sham rTMS studies, reporting similar designs with sufficient information for replication, to achieve a significant level of evidence regarding the use of rTMS in SCI.
Collapse
Affiliation(s)
- Nabila Brihmat
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
| | - Didier Allexandre
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Soha Saleh
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Jian Zhong
- Burke Neurological Institute and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, NY, United States
| | - Guang H. Yue
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Gail F. Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| |
Collapse
|
3
|
Toledo RS, Stein DJ, Sanches PRS, da Silva LS, Medeiros HR, Fregni F, Caumo W, Torres ILS. rTMS induces analgesia and modulates neuroinflammation and neuroplasticity in neuropathic pain model rats. Brain Res 2021; 1762:147427. [PMID: 33737061 DOI: 10.1016/j.brainres.2021.147427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/28/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Neuropathic pain (NP) is related to the presence of hyperalgesia, allodynia, and spontaneous pain, affecting 7%-10% of the general population. Repetitive transcranial magnetic stimulation (rTMS) is applied for NP relief, especially in patients with refractory pain. As NP response to existing treatments is often insufficient, we aimed to evaluate rTMS treatment on the nociceptive response of rats submitted to an NP model and its effect on pro-and anti-neuroinflammatory cytokine and neurotrophin levels. A total of 106 adult male Wistar rats (60 days old) were divided into nine experimental groups: control, control + sham rTMS, control + rTMS, sham NP, sham neuropathic pain + sham rTMS, sham neuropathic pain + rTMS, NP, neuropathic pain + sham rTMS, and neuropathic pain + rTMS. NP establishment was achieved 14 days after the surgery to establish chronic constriction injury (CCI) of the sciatic nerve. Rats were treated with 5 min daily sessions of rTMS for eight consecutive days. Nociceptive behavior was assessed using von Frey and hot plate tests at baseline, after NP establishment, and post-treatment. Biochemical assays to assess the levels of brain-derived neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-10, were performed in the prefrontal cortex (PFC) and spinal cord tissue homogenates. rTMS treatment promoted a partial reversal of mechanical allodynia and total reversal of thermal hyperalgesia induced by CCI. Moreover, rTMS increased the levels of BDNF, TNF-α, and IL-10 in the PFC. rTMS may be a promising tool for the treatment of NP. The alterations induced by rTMS on neurochemical parameters may have contributed to the analgesic effect presented.
Collapse
Affiliation(s)
- Roberta Ströher Toledo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Roberto Stefani Sanches
- Serviço de Pesquisa e Desenvolvimento em Engenharia Biomédica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lisiane Santos da Silva
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Jung JH, Lee HJ, Cho DY, Lim JE, Lee BS, Kwon SH, Kim HY, Lee SJ. Effects of Combined Upper Limb Robotic Therapy in Patients With Tetraplegic Spinal Cord Injury. Ann Rehabil Med 2019; 43:445-457. [PMID: 31499598 PMCID: PMC6734021 DOI: 10.5535/arm.2019.43.4.445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/21/2019] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To confirm the effects of combined upper limb robotic therapy (RT) as compared to conventional occupational therapy (OT) in tetraplegic spinal cord injury (SCI) patients and to suggest the optimized treatment guidelines of combined upper limb RT. METHODS After subject recruitment and screening for eligibility, the baseline evaluation for outcome measures were performed. We evaluated the Graded and Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), the American Spinal Injury Association upper extremity motor score, grip and pinch strength, and the Spinal Cord Independence Measurement III (SCIM-III). In this study, the pre-tested participants were divided randomly into the RT and OT group. The utilized interventions included combined upper limb RT using ArmeoPower and Amadeo (RT group), or conventional OT (OT group) in addition to daily inpatient rehabilitation program. The participants underwent 40 minutes×3 sessions×5 weeks of interventions. RESULTS A total of 30 tetraplegic SCI patients completed entire study program. After 5 weeks of intervention, both groups demonstrated increases in GRASSP-strength and SCIM-III. The manual muscle test scores of elbow flexion, elbow extension, 2-5th metacarpophalangeal extension, and SCIM-III subscores of bathing-upper, dressing-upper, and grooming as well as the GRASSP-qualitative prehension score were noted to have been significantly increased in the RT group as evaluated. The OT group showed improvements in the GRASSP-quantitative prehension score and some items in grip and pinch strength. There was no significant difference between the two groups in almost all measurements except for the SCIM-III bathing-upper subscore. CONCLUSION Combined upper limb RT demonstrated beneficial effects on the upper limb motor function in patients with tetraplegic SCI, which were comparable with conventional OT.
Collapse
Affiliation(s)
- Joo Hwan Jung
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Hye Jin Lee
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Duk Youn Cho
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Korea
| | - Jung-Eun Lim
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Korea
| | - Bum Suk Lee
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Korea
| | - Seung Hyun Kwon
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Hae Young Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Su Jeong Lee
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| |
Collapse
|
5
|
Li S, Wang Y, Li S, Lv Y, Zhang L, Zou J, Ma L. Research on Assisting Clinicians to Operate rTMS Precisely Based on the Coil Magnetic Field Spatial Distribution With Magnetic Resonance Imaging Navigation. Front Neurosci 2019; 13:858. [PMID: 31481867 PMCID: PMC6709653 DOI: 10.3389/fnins.2019.00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023] Open
Abstract
Objective: To assist clinicians to operate repetitive Transcranial Magnetic Stimulation (rTMS) precisely based on the coil magnetic field spatial distribution with Magnetic Resonance Imaging (MRI) Navigation. Methods: A fast method for calculating electromagnetic fields in layered brain structures in frequency domain was proposed. By approaching Bessel function in different intervals, the integral with a highly oscillatory kernel was transformed into two parts: a definite integral and a weakened oscillatory one. The distribution of induced current density and magnetic field intensity of rTMS stimulation effect on brain was quantitatively calculated, so that clinicians could intuitively grasp the safe range of coil stimulation on the brain. Then, the crucial factor of the stimulation effect of rTMS was determined, and an accurate coil positioning of the rTMS efficiently was completed. Result: The maximal attenuation of induced electric field and magnetic induction intensity was 72.20 and 86.867% at 3 cm away from the skin in the brain layered model. The clinical examination results of electric field intensity distribution, magnetic field intensity distribution, current density distribution, layered brain modeling, and coil location speed in the brain model teaching group were significantly higher than those in the traditional teaching group (P < 0.001). Conclusion: It is suitable for clinicians to quickly complete the precise positioning of rTMS, master the adjustment of coil stimulation therapeutic parameters, and realize the precise positioning operation of rTMS with MRI navigation in intracranial. Clinical Trial registration: Chinese Clinical Trial Registry (ChiCTR1800018616); Registered on 30th September 2018
Collapse
Affiliation(s)
- Shijun Li
- Department of Medical Instruments, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Radiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yi Wang
- Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - ShengJie Li
- Department of Rehabilitation, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yanwei Lv
- Clinical Epidemiology and Biostatistics Research Office, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Lei Zhang
- Department of Medical Information, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jun Zou
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Lin Ma
- Department of Radiology, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|