1
|
Wang Y, Wang C, Li J. Neutrophil extracellular traps: a catalyst for atherosclerosis. Mol Cell Biochem 2024; 479:3213-3227. [PMID: 38401035 DOI: 10.1007/s11010-024-04931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
Neutrophil extracellular traps (NETs) are network-like structures released by activated neutrophils. They consist mainly of double-stranded DNA, histones, and neutrophil granule proteins. Continuous release of NETs in response to external stimuli leads to activation of surrounding platelets and monocytes/macrophages, resulting in damage to endothelial cells (EC) and vascular smooth muscle cells (VSMC). Some clinical trials have demonstrated the association between NETs and the severity and prognosis of atherosclerosis. Furthermore, experimental findings have shed light on the molecular mechanisms by which NETs contribute to atherogenesis. NETs play a significant role in the formation of atherosclerotic plaques. This review focuses on recent advancements in the understanding of the relationship between NETs and atherosclerosis. It explores various aspects, including the formation of NETs in atherosclerosis, clinical trials investigating NET-induced atherosclerosis, the mechanisms by which NETs promote atherogenesis, and the translational implications of NETs. Ultimately, we aim to propose new research directions for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yinyu Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jiayan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
3
|
Neeli I, Moarefian M, Kuseladass J, Dwivedi N, Jones C, Radic M. Neutrophil attachment via Mac-1 ( αMβ2; CD11b/CD18; CR3) integrins induces PAD4 deimination of profilin and histone H3. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220247. [PMID: 37778386 PMCID: PMC10542442 DOI: 10.1098/rstb.2022.0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Neutrophil adhesion to endothelia, entry into tissues and chemotaxis constitute essential steps in the immune response to infections that drive inflammation. Neutrophils bind to other cells and migrate via adhesion receptors, notably the αMβ2 integrin dimer (also called Mac-1, CR3 or CD11b/CD18). Here, the response of neutrophils to integrin engagement was examined by monitoring the activity of peptidylarginine deiminase 4 (PAD4). Histone H3 deimination was strongly stimulated by manganese, an integrin-activating divalent cation, even in the absence of additional inflammatory stimuli. Manganese-induced cell attachment resulted in neutrophil swarm formation that paralleled histone deimination, whereas antibodies that impair integrin binding prevented both cell adhesion and histone deimination. Manganese treatment led to putative deimination of profilin, a protein that functions as an actin-organizing hub, as detected by two-dimensional gel electrophoresis and citrulline immunoblotting. Cl-amidine, a covalent inhibitor of PAD4, and GSK484, a specific PAD4 inhibitor, blocked profilin deimination. Neutrophil migration toward leukotriene B4 and toward synovial fluid from a rheumatoid arthritis patient were inhibited by chloramidine, thus supporting the contribution of deimination to chemotaxis. The data, based on a simplified system for integrin activation, imply a mechanism whereby integrin attachment coordinates neutrophil responses to inflammation and orchestrates deimination of nuclear and cytoskeletal proteins. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Indira Neeli
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Maryam Moarefian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jayalakshmi Kuseladass
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nishant Dwivedi
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caroline Jones
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Marko Radic
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Teng Y, Chen Y, Tang X, Wang S, Yin K. PAD2: A potential target for tumor therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188931. [PMID: 37315720 DOI: 10.1016/j.bbcan.2023.188931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Peptide arginine deiminase 2(PAD2) catalyzes the conversion of arginine residues on target proteins to citrulline residues in the presence of calcium ions. This particular posttranslational modification is called citrullination. PAD2 can regulate the transcriptional activity of genes through histone citrullination and nonhistone citrullination. In this review, we summarize the evidence from recent decades and systematically illustrate the role of PAD2-mediated citrullination in tumor pathology and the regulation of tumor-associated immune cells such as neutrophils, monocytes, macrophages and T cells. Several PAD2-specific inhibitors are also presented to discuss the feasibility of anti-PAD2 therapy to treat tumors and the urgent problems to be solved. Finally, we review some recent developments in the development of PAD2 inhibitors.
Collapse
Affiliation(s)
- Yi Teng
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuhang Chen
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
Shimosawa T. Targeting Inflammation is a Double-Edged Sword. Is PDIA1 A Key? J Atheroscler Thromb 2022; 29:1273-1274. [PMID: 35135931 PMCID: PMC9444801 DOI: 10.5551/jat.ed191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tatsuo Shimosawa
- International University of Health and Welfare, School of Medicine, Department of Clinical Laboratory
| |
Collapse
|