1
|
Ou W, Tan R, Zhai J, Sun L, Quan Z, Huang X, Xu F, Xu Q, Zhou C. Silencing circ_0043256 inhibited CoCl2-induced proliferation, migration, and aerobic glycolysis in gastric cancer cells. Sci Rep 2025; 15:171. [PMID: 39748101 PMCID: PMC11697268 DOI: 10.1038/s41598-024-84548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
We aimed to explore the role of circular RNA 0043256 (circ_0043256) in gastric cancer (GC) and its underlying mechanisms. The impact of circ_0043256 silencing on the proliferation, migration, apoptosis, and aerobic glycolysis of MKN-45 and AGS cells induced by CoCl2 was assessed through the utilization of CCK-8, wound healing assay, flow cytometry, and metabolic analysis. The interaction between circ_0043256 and miR-593-5p, as well as the involvement of the miR-593-5p/RRM2 axis in gastric cancer, were confirmed via luciferase assay, Western blot, and bioinformatics analysis. We found that circ_0043256 was up-regulated in GC tissues and CoCl2-treated MKN-45 and AGS cells. Silencing of circ_0043256 reversed CoCl2-induced proliferation, migration, and aerobic glycolysis in MKN-45 and AGS cells. Additionally, circ_0043256 silencing enhanced cell apoptosis and G2/M phase cell cycle arrest in response to CoCl2 treatment. Furthermore, the miR-593-5p/RRM2 axis was identified as a regulatory mechanism for circ_0043256 function in GC. Silencing of circ_0043256 and miR-593-5p mimic co-transfection significantly inhibited CoCl2-induced cellular responses in MKN-45 and AGS cells. A glycolysis inhibitor 2-DG further enhanced the inhibitory effect of circ_0043256 silencing on aerobic glycolysis of CoCl2-induced MKN-45 and AGS cells. Additionally, the inhibition of circ_0043256 resulted in a reduction in tumor volume and the expression of proliferation marker proteins in nude mice. Moreover, the suppression of circ_0043256 led to an increase in miR-593-5p expression and a decrease in RRM2 expression, ultimately causing a decrease in glycolytic-related proteins associated with the glycolytic pathway. Targeting this axis may offer a novel therapeutic approach for treating GC.
Collapse
Affiliation(s)
- Wenting Ou
- The Departments of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Rongjian Tan
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Jiawei Zhai
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Lijun Sun
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Zhenhao Quan
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Xianjin Huang
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Feipeng Xu
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Qingwen Xu
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Caijin Zhou
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China.
| |
Collapse
|
2
|
Luo C, Zhu D, Chen YH. CircRASSF2 targets miR-218-5p to regulate gastric cancer cell proliferation, migration, and apoptosis. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:608-615. [DOI: 10.11569/wcjd.v32.i8.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|