1
|
Lee JH, Yang SB, Park SJ, Kweon S, Ma G, Seo M, Kim HR, Kang TB, Lim JH, Park J. Cell-Penetrating Peptide Like Anti-Programmed Cell Death-Ligand 1 Peptide Conjugate-Based Self-Assembled Nanoparticles for Immunogenic Photodynamic Therapy. ACS NANO 2025; 19:2870-2889. [PMID: 39761412 DOI: 10.1021/acsnano.4c16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers. These carrier-free nanoparticles possess the ability to penetrate the cell membrane of cancer cells and target tumors expressing PD-L1 on their surface. Notably, CPPD1 nanoparticles effectively blocked programmed cell death-1 (PD-1)/PD-L1 interactions and reduced PD-L1 expression via lysosomal degradation. They also demonstrated the responsiveness of CPPD1 nanoparticles in photodynamic therapy (PDT) to a 635 nm laser, leading to the generation of ROS, and induction of various immunogenic cell deaths (ICD). Highly penetrating CPPD1 nanoparticles could immunogenically modulate the microenvironment of CT26 cancer and were also effective in treating abscopal metastatic tumors, addressing major limitations of traditional PDT.
Collapse
Affiliation(s)
- Jun-Hyuck Lee
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Seong-Bin Yang
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Seong Jin Park
- Department of Research, Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Gaeun Ma
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Minho Seo
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ha Rin Kim
- School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Tae-Bong Kang
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji-Hong Lim
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Jooho Park
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
2
|
Capozza M, Digilio G, Gagliardi M, Tei L, Marchesi S, Terreno E, Stefania R. Silicon Phthalocyanines Functionalized with Axial Substituents Targeting PSMA: Synthesis and Preliminary Assessment of Their Potential for PhotoDynamic Therapy of Prostate Cancer. ChemMedChem 2024:e202400218. [PMID: 39082378 DOI: 10.1002/cmdc.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Photodynamic therapy (PDT) is a clinical modality based on the irradiation of different diseases, mostly tumours, with light following the selective uptake of a photosensitiser by the pathological tissue. In this study, two new silicon(IV)phtalocyanines (SiPcs) functionalized at both axial positions with a PSMA inhibitor are reported as candidate photosensitizers for PDT of prostate cancer, namely compounds SiPc-PQ(PSMAi)2 and SiPc-OSi(PSMAi)2. These compounds share the same PSMA-binding motif, but differ in the linker that connects the inhibitor moiety to the Si(IV) atom: an alkoxy (Si-O-C) bond for SiPc-PQ(PSMAi)2, and a silyloxy (Si-O-Si) bond for SiPc-OSi(PSMAi)2. Both compounds were synthesized by a facile synthetic route and fully characterized by 2D NMR, mass spectrometry and absorption/fluorescence spectrophotometry. The PDT agents showed a suitable solubility in water, where they essentially exist in monomeric form. SiPc-PQ(PSMAi)2 showed a higher singlet oxygen quantum yield ΦΔ, higher fluorescence quantum yields ΦF and better photostability than SiPc-OSi(PSMAi)2. Both compounds were efficiently taken up by PSMA(+) PC3-PIP cells, but not by PSMA(-) PC3-FLU cells. However, SiPc-PQ(PSMAi)2 showed a more specific photoinduced cytotoxicity in vitro, which is likely attributable to a better stability of its water solutions.
Collapse
Affiliation(s)
- Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, Torino, 10126, Italy
| | - Giuseppe Digilio
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| | - Michela Gagliardi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, Torino, 10126, Italy
| | - Lorenzo Tei
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| | - Stefano Marchesi
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, Torino, 10126, Italy
| | - Rachele Stefania
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| |
Collapse
|