1
|
Jiang B, Chen Z, Zhou J. A novel prognostic risk score model based on RNA editing level in lower-grade glioma. Comput Biol Chem 2024; 113:108229. [PMID: 39383624 DOI: 10.1016/j.compbiolchem.2024.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Lower-grade glioma (LGG) refers to WHO grade 2 and 3 gliomas. Surgery combined with radiotherapy and chemotherapy can significantly improve the prognosis of LGG patients, but tumor progression is still unavoidable. As a form of posttranscriptional regulation, RNA editing (RE) has been reported to be involved in tumorigenesis and progression and has been intensively studied recently. METHODS Survival data and RE data were subjected to univariate and multivariate Cox regression analysis and lasso regression analysis to establish an RE risk score model. A nomogram combining the risk score and clinicopathological features was built to predict the 1-, 3-, and 5-year survival probability of patients. The relationship among ADAR1, SOD2 and SOAT1 was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) RESULTS: A risk model associated with RE was constructed and patients were divided into different risk groups based on risk scores. The model demonstrated strong prognostic capability, with the area under the ROC curve (AUC) values of 0.882, 0.938, and 0.947 for 1-, 3-, and 5-year survival predictions, respectively. Through receiver operating characteristic curve (ROC) curves and calibration curves, it was verified that the constructed nomogram had better performance than age, grade, and risk score in predicting patient survival probability. Apart from this functional analysis, the results of correlation analyses between risk differentially expressed genes (RDEGs) and RE help us to understand the underlying mechanism of RE in LGG. ADAR may regulate the expression of SOD2 and SOAT1 through gene editing. CONCLUSION In conclusion, this study establishes a novel and accurate 17-RE model and a nomogram for predicting the survival probability of LGG patients. ADAR may affect the prognosis of glioma patients by influencing gene expression.
Collapse
Affiliation(s)
- Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| | - Ziyang Chen
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jiajie Zhou
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
2
|
Felix AS, Quillin AL, Mousavi S, Heemstra JM. Harnessing Nature's Molecular Recognition Capabilities to Map and Study RNA Modifications. Acc Chem Res 2022; 55:2271-2279. [PMID: 35900335 PMCID: PMC9388579 DOI: 10.1021/acs.accounts.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA editing or "epitranscriptomic modification" refers to the processing of RNA that occurs after transcription to alter the sequence or structure of the nucleic acid. These chemical alterations can be found on either the ribose sugar or the nucleobase, and although many are "silent" and do not change the Watson-Crick-Franklin code of the RNA, others result in recoding events. More than 170 RNA modifications have been identified so far, each having a specific biological purpose. Additionally, dysregulated RNA editing has been linked to several types of diseases and disorders. As new modifications are discovered and our understanding of their functional impact grows, so does the need for selective methods of identifying and mapping editing sites in the transcriptome.The most common methods for studying RNA modifications rely on antibodies as affinity reagents; however, antibodies can be difficult to generate and often have undesirable off-target binding. More recently, selective chemical labeling has advanced the field by offering techniques that can be used for the detection, enrichment, and quantification of RNA modifications. In our method using acrylamide for inosine labeling, we demonstrated the versatility with which this approach enables pull-down or downstream functionalization with other tags or affinity handles. Although this method did enable the quantitative analysis of A-to-I editing levels, we found that selectivity posed a significant limitation, likely because of the similar reactivity profiles of inosine and pseudouridine or other nucleobases.Seeking to overcome the inherent limitations of antibodies and chemical labeling methods, a more recent approach to studying the epitranscriptome is through the repurposing of proteins and enzymes that recognize modified RNA. Our laboratory has used Endonuclease V, a repair enzyme that cleaves inosine-containing RNAs, and reprogrammed it to instead bind inosine. We first harnessed EndoV to develop a preparative technique for RNA sequencing that we termed EndoVIPER-seq. This method uses EndoV to enrich inosine-edited RNAs, providing better coverage in RNA sequencing and leading to the discovery of previously undetected A-to-I editing sites. We also leveraged EndoV to create a plate-based immunoassay (EndoVLISA) to quantify inosine in cellular RNA. This approach can detect differential A-to-I editing levels across tissue types or disease states while being independent of RNA sequencing, making it cost-effective and high-throughput. By harnessing the molecular recognition capabilities of this enzyme, we show that EndoV can be repurposed as an "anti-inosine antibody" to develop new methods of detecting and enriching inosine from cellular RNA.Nature has evolved a plethora of proteins and enzymes that selectively recognize and act on RNA modifications, and exploiting the affinity of these biomolecules offers a promising new direction for the field of epitranscriptomics.
Collapse
Affiliation(s)
- Ansley S. Felix
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Alexandria L. Quillin
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shikufa Mousavi
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
4
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
5
|
Liu J, Cheng X, Liu F, Hao T, Wang J, Guo J, Li J, Liu Z, Li W, Shi J, Zhang X, Li J, Yan J, Zhang G. Identification of coding region SNPs from specific and sensitive mRNA biomarkers for the deconvolution of the semen donor in a body fluid mixture. Forensic Sci Int Genet 2021; 52:102483. [PMID: 33610949 DOI: 10.1016/j.fsigen.2021.102483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
mRNA markers provide a very promising method for the identification of human body fluids or tissues in the context of forensic investigations. Previous studies have shown that different body fluids can be distinguished from each other according to their specific mRNA biomarkers. In this study, we evaluated eight semen-specific mRNA markers (KLK3, NKX3-1, CKB, KLK2, PRAC1, SEMG1, TGM4, and SORD) that encompass 12 coding single nucleotide polymorphisms (cSNPs) to identify the semen contributor in a mixed stain. Five highly specific and sensitive mRNA markers for blood, menstrual blood, saliva, vaginal secretions, and skin were also incorporated into the PCR system as body fluid-positive controls. Reverse transcription polymerase chain reaction (RT-PCR), multiplex PCR and SNaPshot mini-sequencing assays were established for the identification of semen-specific mRNA. The amplicon size ranged from 133 to 337 bp. The semen-specific system was examined against blood, menstrual blood, saliva, vaginal secretions, and skin swabs. The eight mRNA biomarkers were semen-specific and could be successfully typed in laboratory-generated mixtures composed of different body fluids supplemented with 1 ng of semen cDNA. This system possessed a high sensitivity that ranged from 1:10-1:100 for detecting trace amounts of semen in semen-containing body fluid mixtures. Additionally, our results demonstrated that the cSNPs polymorphisms included in the mRNA markers were concordant with genomic DNA (gDNA). Despite the presence of other body fluids, the system exhibited high sensitivity and specificity to the semen in the mixture. In future studies, we will add other cSNPs from the semen-specific genes using massively parallel sequencing to further improve our system.
Collapse
Affiliation(s)
- Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiaojuan Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Ting Hao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangling Guo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jintao Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Wenyan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jie Shi
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiuying Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jing Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
6
|
Taguchi YH, Dharshini SAP, Gromiha MM. Identification of Transcription Factors, Biological Pathways, and Diseases as Mediated by N6-methyladenosine Using Tensor Decomposition-Based Unsupervised Feature Extraction. APPLIED SCIENCES 2020; 11:213. [DOI: 10.3390/app11010213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
N6-methyladenosine (m6A) editing is the most common RNA modification known to contribute to various biological processes. Nevertheless, the mechanism by which m6A regulates transcription is unclear. Recently, it was proposed that m6A controls transcription through histone modification, although no comprehensive analysis using this dataset was performed. In this study, we applied tensor decomposition (TD)-based unsupervised feature extraction (FE) to a dataset composed of mouse embryonic stem cells (mESC) and a human cancer cell line (HEC-1-A) and successfully identified two sets of genes significantly overlapping between humans and mice (63 significantly overlapped genes among a total of 16,763 genes common to the two species). These significantly overlapped genes occupy at most 10% genes from both gene sets. Using these two sets of genes, we identified transcription factors (TFs) that m6A might recruit, biological processes that m6A might contribute to, and diseases that m6A might cause; they also largely overlap with each other. Since they were commonly identified using two independent datasets, the results regarding these TFs, biological processes, and diseases should be highly robust and trustworthy. It will help us to understand the mechanisms by which m6A contributes to biological processes.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
7
|
Bhakta S, Sakari M, Tsukahara T. RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code. Sci Rep 2020; 10:17304. [PMID: 33057101 PMCID: PMC7560856 DOI: 10.1038/s41598-020-74374-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Many genetic diseases are caused by T-to-C point mutations. Hence, editing of mutated genes represents a promising strategy for treating these disorders. We engineered an artificial RNA editase by combining the deaminase domain of APOBEC1 (apolipoprotein B mRNA editing catalytic polypeptide 1) with a guideRNA (gRNA) which is complementary to target mRNA. In this artificial enzyme system, gRNA is bound to MS2 stem-loop, and deaminase domain, which has the ability to convert mutated target nucleotide C-to-U, is fused to MS2 coat protein. As a target RNA, we used RNA encoding blue fluorescent protein (BFP) which was derived from the gene encoding GFP by 199 T > C mutation. Upon transient expression of both components (deaminase and gRNA), we observed GFP by confocal microscopy, indicating that mutated 199C in BFP had been converted to U, restoring original sequence of GFP. This result was confirmed by PCR-RFLP and Sanger's sequencing using cDNA from transfected cells, revealing an editing efficiency of approximately 21%. Although deep RNA sequencing result showed some off-target editing events in this system, we successfully developed an artificial RNA editing system using artificial deaminase (APOBEC1) in combination with MS2 system could lead to therapies that treat genetic disease by restoring wild-type sequence at the mRNA level.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, M1-4F, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | - Matomo Sakari
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, M1-4F, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, M1-4F, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan.
| |
Collapse
|
8
|
Kadena K, Vlamos P. Amyotrophic Lateral Sclerosis: Current Status in Diagnostic Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:179-187. [PMID: 32468476 DOI: 10.1007/978-3-030-32633-3_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, neurodegenerative disease that affects the human motor system. ALS is a highly heterogeneous disease, depending on several causative factors. The heterogeneity of the disease is also reflected in the variation of the symptoms in ALS patients. The worldwide annual incidence of ALS is about 2.08 per 100,000 with uniform rates in Caucasian populations and lower rates in African, Asian, and Hispanic populations, while the number of individuals with ALS is expected to grow significantly between 2015 and 2040 with an estimated increase of 69% (Chio et al. 2013a; Arthur et al. 2016).
Collapse
Affiliation(s)
- Katerina Kadena
- Department of Informatics, Ionian University, Corfu, Greece.
| | | |
Collapse
|
9
|
Rodrigues NF, Nogueira FCS, Domont GB, Margis R. Identification of soybean trans-factors associated with plastid RNA editing sites. Genet Mol Biol 2020; 43:e20190067. [PMID: 32459826 PMCID: PMC7231544 DOI: 10.1590/1678-4685-gmb-2019-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/05/2022] Open
Abstract
RNA editing is a posttranscriptional process that changes nucleotide sequences, among which cytosine-to-uracil by a deamination reaction can revert non-neutral codon mutations. Pentatricopeptide repeat (PPR) proteins comprise a family of RNA-binding proteins, with members acting as editing trans-factors that recognize specific RNA cis-elements and perform the deamination reaction. PPR proteins are classified into P and PLS subfamilies. In this work, we have designed RNA biotinylated probes based in soybean plastid RNA editing sites to perform trans-factor specific protein isolation. Soybean cis-elements from these three different RNA probes show differences in respect to other species. Pulldown samples were submitted to mass spectrometry for protein identification. Among detected proteins, five corresponded to PPR proteins. More than one PPR protein, with distinct functional domains, was pulled down with each one of the RNA probes. Comparison of the soybean PPR proteins to Arabidopsis allowed identification of the closest homologous. Differential gene expression analysis demonstrated that the PPR locus Glyma.02G174500 doubled its expression under salt stress, which correlates with the increase of its potential rps14 editing. The present study represents the first identification of RNA editing trans-factors in soybean. Data also indicated that potential multiple trans-factors should interact with RNA cis-elements to perform the RNA editing.
Collapse
Affiliation(s)
- Nureyev F. Rodrigues
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre,
RS, Brazil
| | - Fábio C. S. Nogueira
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Química,
Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica (PPGBq), Unidade
Proteômica, Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Química,
Laboratório de Apoio ao Desenvolvimento Tecnológico (LADETEC), Rio de Janeiro, RJ,
Brazil
| | - Gilberto B. Domont
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Química,
Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica (PPGBq), Unidade
Proteômica, Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre,
RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de
Biofísica, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Ramadan AM. Salinity effects on nad3 gene RNA editing of wild barley mitochondria. Mol Biol Rep 2020; 47:3857-3865. [PMID: 32358688 DOI: 10.1007/s11033-020-05475-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/25/2020] [Indexed: 12/30/2022]
Abstract
Nad complex plays a very important role during cellular respiration. nad3 (nad dehydrogenase subunit 3) is one of the biggest subunits in this complex. Four cDNAs of nad3 gene were characterized in Hordeum vulgare subsp. spontaneum at exposed to four periods of 500 mM salinity, 0 h or control (accession no. MN066165), after 2 h (accession no. MN066166), after 12 h (accession no. MN066167) and after 24 h (accession no. MN066168) using RNA-seq raw data. Seventeen RNA editing sites were found in positions (or nucleotide nos. C5, C39, C44, C61, C62, C79, C80, C147, C185, C190, C191, C208, C209, C275, C317, C344, C349) within the nad3 coding region. These alterations represent differential editing at four exposure times. The maximum editing rate was revealed 2 and 12 h after salinity exposure. However, these edits were disrupted after 24 h probably due to the initiation of program cell death machinery. We found that RNA editing not only improved protein function but also may improve codon bias by altering the nucleotide without any change in amino acid. Characterization of pentatricopeptide repeat-containing protein At4g13650 (PPRSp1) in wild barley helped us to understand the behavior of editing sites C190 and C191 under salinity. Position - 6 in cis-element upstream editing sites of C155, C190 and C191 may be vital to the editing process in these sites by PPRSp1 protein. The differential editing of this gene under salinity led to a relationship between RNA editing and cellular respiration regulation.
Collapse
Affiliation(s)
- Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia. .,Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| |
Collapse
|
11
|
MUC1 oncoprotein mitigates ER stress via CDA-mediated reprogramming of pyrimidine metabolism. Oncogene 2020; 39:3381-3395. [PMID: 32103170 PMCID: PMC7165067 DOI: 10.1038/s41388-020-1225-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The Mucin 1 (MUC1) protein is overexpressed in various cancers and mediates chemotherapy resistance. However, the mechanism is not fully understood. Given that most chemotherapeutic drugs disrupt ER homeostasis as part of their toxicity, and MUC1 expression is regulated by proteins involved in ER homeostasis, we investigated the link between MUC1 and ER homeostasis. MUC1 knockdown in pancreatic cancer cells enhanced unfolded protein response (UPR) signaling and cell death upon ER stress induction. Transcriptomic analysis revealed alterations in the pyrimidine metabolic pathway and cytidine deaminase (CDA). ChIP and CDA activity assays showed that MUC1 occupied CDA gene promoter upon ER stress induction correlating with increased CDA expression and activity in MUC1-expressing cells as compared to MUC1 knockdown cells. Inhibition of either the CDA or pyrimidine metabolic pathway diminished survival in MUC1-expressing cancer cells upon ER stress induction. Metabolomic analysis demonstrated that MUC1-mediated CDA activity corresponded to deoxycytidine to deoxyuridine metabolic reprogramming upon ER stress induction. The resulting increase in deoxyuridine mitigated ER stress-induced cytotoxicity. Additionally, given 1) the established roles of MUC1 in protecting cells against reactive oxygen species (ROS) insults, 2) ER stress-generated ROS further promote ER stress and 3) the emerging anti-oxidant property of deoxyuridine, we further investigated if MUC1 regulated ER stress by a deoxyuridine-mediated modulation of ROS levels. We observed that deoxyuridine could abrogate ROS-induced ER stress to promote cancer cell survival. Taken together, our findings demonstrate a novel MUC1-CDA axis of the adaptive UPR that provides survival advantage upon ER stress induction.
Collapse
|
12
|
Abstract
C-to-U RNA editing enzymatically converts the base C to U in RNA molecules and could lead to nonsynonymous changes when occurring in coding regions. Hundreds to thousands of coding sites were recently found to be C-to-U edited or editable in humans, but the biological significance of this phenomenon is elusive. Here, we test the prevailing hypothesis that nonsynonymous editing is beneficial because it provides a means for tissue- or time-specific regulation of protein function that may be hard to accomplish by mutations due to pleiotropy. The adaptive hypothesis predicts that the fraction of sites edited and the median proportion of RNA molecules edited (i.e., editing level) are both higher for nonsynonymous than synonymous editing. However, our empirical observations are opposite to these predictions. Furthermore, the frequency of nonsynonymous editing, relative to that of synonymous editing, declines as genes become functionally more important or evolutionarily more constrained, and the nonsynonymous editing level at a site is negatively correlated with the evolutionary conservation of the site. Together, these findings refute the adaptive hypothesis; they instead indicate that the reported C-to-U coding RNA editing is mostly slightly deleterious or neutral, probably resulting from off-target activities of editing enzymes. Along with similar conclusions on the more prevalent A-to-I editing and m6A modification of coding RNAs, our study suggests that, at least in humans, most events of each type of posttranscriptional coding RNA modification likely manifest cellular errors rather than adaptations, demanding a paradigm shift in the research of posttranscriptional modification.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
13
|
Wolfe AD, Arnold DB, Chen XS. Comparison of RNA Editing Activity of APOBEC1-A1CF and APOBEC1-RBM47 Complexes Reconstituted in HEK293T Cells. J Mol Biol 2019; 431:1506-1517. [PMID: 30844405 PMCID: PMC6443457 DOI: 10.1016/j.jmb.2019.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/15/2022]
Abstract
RNA editing is an important form of regulating gene expression and activity. APOBEC1 cytosine deaminase was initially characterized as pairing with a cofactor, A1CF, to form an active RNA editing complex that specifically targets APOB RNA in regulating lipid metabolism. Recent studies revealed that APOBEC1 may be involved in editing other potential RNA targets in a tissue-specific manner, and another protein, RBM47, appears to instead be the main cofactor of APOBEC1 for editing APOB RNA. In this report, by expressing APOBEC1 with either A1CF or RBM47 from human or mouse in an HEK293T cell line with no intrinsic APOBEC1/A1CF/RBM47 expression, we have compared direct RNA editing activity on several known cellular target RNAs. By using a sensitive cell-based fluorescence assay that enables comparative quantification of RNA editing through subcellular localization changes of eGFP, the two APOBEC1 cofactors, A1CF and RBM47, showed clear differences for editing activity on APOB and several other tested RNAs, and clear differences were observed when mouse versus human genes were tested. In addition, we have determined the minimal domain requirement of RBM47 needed for activity. These results provide useful functional characterization of RBM47 and direct biochemical evidence for the differential editing selectivity on a number of RNA targets.
Collapse
Affiliation(s)
- Aaron D Wolfe
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Don B Arnold
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|