1
|
Wang W, Xiong H, Li L, Hu X, Zhuang W, Li J, Sun X, Yu Y, Yu Y, Guo Y, Wang Y, Wang R, Wang H, Li Q. Biological impact and therapeutic potential of a novel camptothecin derivative (FLQY2) in pancreatic cancer through inactivation of the PDK1/AKT/mTOR pathway. Bioorg Chem 2024; 148:107436. [PMID: 38735265 DOI: 10.1016/j.bioorg.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Camptothecin (CPT), a pentacyclic alkaloid with antitumor properties, is derived from the Camptotheca acuminata. Topotecan and irinotecan (CPT derivatives) were first approved by the Food and Drug Administration for cancer treatment over 25 years ago and remain key anticancer drugs today. However, their use is often limited by clinical toxicity. Despite extensive development efforts, many of these derivatives have not succeeded clinically, particularly in their effectiveness against pancreatic cancer which remains modest. AIM OF THE STUDY This study aimed to evaluate the therapeutic activity of FLQY2, a CPT derivative synthesized in our laboratory, against pancreatic cancer, comparing its efficacy and mechanism of action with those of established clinical drugs. METHODS The cytotoxic effects of FLQY2 on cancer cells were assessed using an MTT assay. Patient-derived organoid (PDO) models were employed to compare the sensitivity of FLQY2 to existing clinical drugs across various cancers. The impact of FLQY2 on apoptosis and cell cycle arrest in Mia Paca-2 pancreatic cancer cells was examined through flow cytometry. Transcriptomic and proteomic analyses were conducted to explore the underlying mechanisms of FLQY2's antitumor activity. Western blotting was used to determine the levels of proteins regulated by FLQY2. Additionally, the antitumor efficacy of FLQY2 in vivo was evaluated in a pancreatic cancer xenograft model. RESULTS FLQY2 demonstrated (1) potent cytotoxicity; (2) superior tumor-suppressive activity in PDO models compared to current clinical drugs such as gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infinitinib, and lenvatinib; (3) significantly greater tumor inhibition than paclitaxel liposomes in a pancreatic cancer xenograft model; (4) robust antitumor effects, closely associated with the inhibition of the TOP I and PDK1/AKT/mTOR signaling pathways. In vitro studies revealed that FLQY2 inhibited cell proliferation, colony formation, induced apoptosis, and caused cell cycle arrest at nanomolar concentrations. Furthermore, the combination of FLQY2 and gemcitabine exhibited significant inhibitory and synergistic effects. CONCLUSION The study confirmed the involvement of topoisomerase I and the PDK1/AKT/mTOR pathways in mediating the antitumor activity of FLQY2 in treating Mia Paca-2 pancreatic cancer. Therefore, FLQY2 has potential as a novel therapeutic option for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Wenchao Wang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Haonan Xiong
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Lei Li
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Xialin Hu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Wenya Zhuang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Jiangtao Li
- Zhejiang University, School Medicine, Affiliated Hospital 2, Department of Surgery, Hangzhou 310009, China
| | - Xuanrong Sun
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Yanlei Yu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Yuanquan Yu
- Zhejiang University, School Medicine, Affiliated Hospital 2, Department of Surgery, Hangzhou 310009, China
| | - Yinghao Guo
- Zhejiang University, School Medicine, Affiliated Hospital 2, Department of Surgery, Hangzhou 310009, China
| | - Yihang Wang
- Zhejiang University, School Medicine, Affiliated Hospital 2, Department of Surgery, Hangzhou 310009, China
| | - Ruojiong Wang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - Hong Wang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China
| | - QingYong Li
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment, Zhejiang Province, China.
| |
Collapse
|
2
|
Wang W, Ling X, Wang R, Xiong H, Hu L, Yang Z, Wang H, Zhang Y, Wu W, Singh PK, Wang J, Li F, Li Q. Structure-Activity Relationship of FL118 Platform Position 7 Versus Position 9-Derived Compounds and Their Mechanism of Action and Antitumor Activity. J Med Chem 2023; 66:16888-16916. [PMID: 38100041 DOI: 10.1021/acs.jmedchem.3c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Structurally, FL118 is a camptothecin analogue and possesses exceptional antitumor efficacy against human cancer through a novel mechanism of action (MOA). In this report, we have synthesized and characterized 24 FL118 Position 7-substituted and 24 FL118 Position 9-substituted derivatives. The top compounds were further characterized for their MOA in colorectal cancer (CRC) models using CRC patient-derived xenograft (PDX) models and pancreatic cancer PDX models to evaluate their antitumor activities. Four FL118 Position 7-substituted derivatives showed significantly better antitumor efficacy than the FL118 Position 9-substituted derivatives. The four identified compounds also appeared to have better antitumor activity than their parental platform FL118. Interestingly, RNA-Seq analyses indicated that three of the four compounds exerted antitumor effects via an MOA similar to FL118, which provided an intriguing opportunity for follow-up studies. Extended in vivo studies revealed that FL77-6 (7-(4-ethylphenyl)-FL118), FL77-9 (7-(4-methoxylphenyl)-FL118), and FL77-24 (7-(3, 5-dimethoxyphenyl)-FL118) exhibit potential for further development toward clinical trials.
Collapse
Affiliation(s)
- Wenchao Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang Ling
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- Canget BioTekpharma, LLC, Buffalo, New York 14203, United States
| | - Ruojiong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haonan Xiong
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liuzhi Hu
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhikun Yang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yali Zhang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Wenjie Wu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
- Canget BioTekpharma, LLC, Buffalo, New York 14203, United States
| | - Prashant K Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
- Developmental Therapeutics (DT) Program, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - QingYong Li
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Wang X, Zhuang Y, Wang Y, Jiang M, Yao L. The recent developments of camptothecin and its derivatives as potential anti-tumor agents. Eur J Med Chem 2023; 260:115710. [PMID: 37595544 DOI: 10.1016/j.ejmech.2023.115710] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
This review article focuses on the research progress made in the structural modifications of camptothecin (CPT), a potent cytotoxic natural alkaloid. CPT possesses a unique 5-fused ring structure and exhibits various beneficial activities such as anti-proliferative, anti-fungal, insecticidal, and anti-SARS-CoV-2 properties. CPT and its analogs, including Topotecan and Irinotecan, have been successfully developed and marketed as topoisomerase I inhibitors. To enhance the therapeutic potential of CPT, researchers have undertaken structural modifications primarily on the A, B, and E rings of the CPT core structure. These modifications aim to improve the efficacy, selectivity, and pharmacokinetic properties of CPT derivatives. The article reviews the advancements in hybridizing CPT with other bioactive compounds, the synthesis of novel CPT analogs, and their associated biological activities. Moreover, the structure-activity relationship (SAR) of these modified CPT derivatives is summarized to gain insights into their structure-function correlations. In addition to discussing the modifications and biological activities of CPT derivatives, the article also touches upon the mechanism of parent drug release. Many CPT derivatives are prodrugs, meaning they require metabolic activation to generate the active form of the drug. It is a resource for researchers interested in developing novel anti-tumor agents based on CPT, addressing the limitations associated with the parent drug, and exploring various aspects of CPT modifications.
Collapse
Affiliation(s)
- Xianzhang Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Yumeng Zhuang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Yuankun Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Maokai Jiang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Lei Yao
- School of Pharmacy, Yantai University, Yantai, 264005, China.
| |
Collapse
|
4
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Liu N, Qi D, Jiang J, Zhang J, Yu C. Significance of combined TGF-β1 and survivin expression on the prognosis of patients with triple-negative breast cancer. Oncol Lett 2022; 23:193. [PMID: 35527782 PMCID: PMC9073572 DOI: 10.3892/ol.2022.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Compared with other types of breast cancer, triple-negative breast cancer (TNBC) has the characteristics of rapid progression, a lack of specific molecular targets for treatment and a poor prognosis. However, based on previously published studies, TGF-β1 and survivin are potentially meaningful for the prognosis of patients with TNBC. The present study was therefore designed to measure and compare the expression of transforming growth factor-β1 (TGF-β1) and survivin in tissue samples of TNBC and non-TNBC patients in order to evaluate their ability as prognostic indicators. In total, 90 TNBC and 52 non-TNBC tissue specimens were selected, following which immunohistochemistry was used to detect the expression of TGF-β1 and survivin in the cancer tissues. Subsequently, the potential association between the expression levels of these two proteins and the clinicopathological variables was analyzed. The expression levels of TGF-β1 and survivin in TNBC tissues were found to be significantly higher compared with those in the non-TNBC tissues. In addition, the results of the present study demonstrated that TGF-β1 expression was positively associated with survivin expression in the TNBC samples, but no significant correlation was found between TGF-β1 and survivin expression in the non-TNBC samples. Kaplan-Meier (K-M) analysis was performed to assess the levels of TGF-β1 and survivin in regard to patient survival, and univariate and multivariate Cox analyses of TGF-β1 and survivin protein expression were performed to analyze the overall survival (OS) and progression-free survival (PFS) rates of patients with TNBC and non-TNBC. Although multivariate Cox analysis demonstrated that neither TGF-β1 or survivin were independent prognostic predictors of TNBC or non-TNBC, results of the K-M curve revealed that patients with TNBC with TGF-β1- and survivin-positive breast cancer exhibited shorter OS and PFS times. Multivariate Cox analysis demonstrated that in patients with TNBC, the combined expression of TGF-β1 and survivin may yield additional prognostic information, compared with patients with non-TNBC.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Pathology, College of Basic Medicine, Beihua University, Jilin 132013, P.R. China
| | - Dongxue Qi
- Department of Pathology, Lianyungang First People's Hospital, Lianyungang, Jiangsu 222000, P.R. China
| | - Jing Jiang
- Department of Pathology, Affiliated Hospital of Beihua University, Jilin 132011, P.R. China
| | - Jihong Zhang
- Department of Pathology, Affiliated Hospital of Beihua University, Jilin 132011, P.R. China
| | - Chunyan Yu
- Department of Pathology, College of Basic Medicine, Beihua University, Jilin 132013, P.R. China
| |
Collapse
|
6
|
Zhang M, Zhou J, Wang L. Breast cancer and pregnancy: Why special considerations prior to treatment are needed in multidisciplinary care. Biosci Trends 2021; 15:276-282. [PMID: 34556594 DOI: 10.5582/bst.2021.01187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Breast cancer diagnosed during pregnancy poses ethical and professional challenges. Clinical management of that condition should ensure the safety of both the mother and fetus. Clinical trials on breast cancer exclude pregnant women, so sufficient evidence with which to formulate guidelines for the management of these patients is lacking. Failing to undergo a breast examination during pregnancy, breast symptoms explained by physiological changes such as pregnancy, and unnecessary abortions after the diagnosis of breast cancer lead to worse outcomes for these patients. Multidisciplinary teams including breast surgeons, obstetricians, radiologists, pathologists, and anesthesiologists need to make an early diagnosis and comprehensively evaluate patients in different gestational weeks and with different stages of breast cancer in order to optimize outcomes.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
7
|
Dai L, Li X, Zheng X, Fu Z, Yao M, Meng S, Zhang J, Han B, Gao Q, Chang J, Cai K, Yang H. TGF-β blockade-improved chemo-immunotherapy with pH/ROS cascade-responsive micelle via tumor microenvironment remodeling. Biomaterials 2021; 276:121010. [PMID: 34247042 DOI: 10.1016/j.biomaterials.2021.121010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Immunosuppressive tumor microenvironment and low delivery efficiency severely impede the tumor chemotherapy effect. To address this issue, we develop a pH/ROS cascade-responsive prodrug micelle to deliver siTGF-β with size-shrinkage and charge-reversal property, leading to synergistical tumor microenvironment remodeling. The nanosystem highly improved endocytosis efficiency and tumor penetration depth through charge reversal and size reduction upon exposure to weakly acidic tumor microenvironment. Moreover, the nanocarrier would rapidly escape from endo/lysosome, disassemble and release siTGF-β and hydroxycamptothecin in response to high intracellular ROS. Furthermore, the nanosystem significantly boosted antitumor immune response and reduced immune tolerance with remodeling tumor microenvironment, which significantly prolonged the survival time of tumor-bearing mice (75% survival rate upon 35 days). It is realized by the combined effects of chemotherapy-enhanced immunogenicity and recruitment of effector T cells, TGF-β-blockade immunotherapy-activated inhibition immunosuppressive tumor microenvironment and epithelial-to-mesenchymal transition (EMT), and regulation physical tumor microenvironment via reducing the dense tumor extracellular matrix and the high tumor interstitial pressure obstacles. To this end, the nanosystem not only overcame biobarriers and reinforced antitumor immune response, but also effectively inhibited tumor growth, metastasis and recurrence in vivo.
Collapse
Affiliation(s)
- Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Xiang Li
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xinmin Zheng
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenxiang Fu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mengjiao Yao
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiangong Zhang
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Binbin Han
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Quanli Gao
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Jing Chang
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Hui Yang
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
8
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
9
|
Yar Saglam AS, Kayhan H, Alp E, Onen HI. Resveratrol enhances the sensitivity of FL118 in triple-negative breast cancer cell lines via suppressing epithelial to mesenchymal transition. Mol Biol Rep 2021; 48:475-489. [PMID: 33389483 DOI: 10.1007/s11033-020-06078-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022]
Abstract
We aimed to investigate whether resveratrol (RSV) could sensitize human triple-negative breast cancer (TNBC) cells to FL118-induced cell death, epithelial to mesenchymal transition (EMT), invasion, and migration. The effects of sequential administration of RSV and FL118 on MDA-MB-436 and MDA-MB-468 cells were evaluated in terms of cell viability, cytotoxicity, apoptosis, cell cycle distribution, active caspase-3/7 levels, migration and invasion. Furthermore, mRNA and protein levels of EMT associated genes and proteins were also evaluated. Sequential administration of RSV and FL118 inhibited the cell viability in both TNBC cell lines. Meanwhile sequential administration of RSV and FL118 also dramatically reduced the migratory and invasive capabilities, it also reversed the EMT process in both TNBC cells. Moreover, sequential administration of RSV and FL118 led to a significant increase of apoptotic cells, as well as active Caspase-3/7 levels. Sequential administration of RSV and FL118 caused TNBC cells accumulating in the G1 phase, and markedly suppressed the mRNA and protein levels of N-cadherin, β-catenin, Vimentin, Snail, and Slug, and also significantly downregulated mRNA levels of Fibronectin, Twist1, Twist2, Zeb1, and Zeb2 genes, while enhanced the mRNA and protein levels of E-cadherin genes. RSV sensitized TNBC cells to FL118 via facilitating apoptosis, migration, invasion, and EMT and enhancing intracellular entrapment of FL118. Thus, our results suggest that since RSV enhanced the in vitro anticancer activity of FL118 in BC, it may be a potential therapeutic agent in advanced BC.
Collapse
Affiliation(s)
- Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey.
| | - Handan Kayhan
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | - Ebru Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Hacer Ilke Onen
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| |
Collapse
|
10
|
Dai X, Wu G, Zhang Y, Zhang X, Yin R, Qi X, Li J, Jiang T. Design, Synthesis, and In Vitro/In Vivo Anti-Cancer Activities of Novel (20 S)-10,11-Methylenedioxy-Camptothecin Heterocyclic Derivatives. Int J Mol Sci 2020; 21:E8495. [PMID: 33187360 PMCID: PMC7697887 DOI: 10.3390/ijms21228495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/11/2023] Open
Abstract
A novel camptothecin analogue, (20S)-10,11-methylenedioxy-camptothecin (FL118), has been proven to show significant antitumor efficacy for a wide variety of solid tumors. However, the further development of FL118 is severely hindered due to its extremely poor water solubility and adverse side effects. Here, two series of novel 20-substituted (20S)-10,11-methylenedioxy-camptothecin coupled with 5-substituted uracils and other heterocyclic rings through glycine were synthesized. All the derivatives showed superior cytotoxic activities in vitro with IC50 values in the nanomolar range. Among them, 12e displayed higher cytotoxic activities in several cancer cell lines with better water solubility than FL118. Our results further showed that, like FL118, 12e inhibited cell proliferation resulting from cell cycle arrest and apoptosis by blocking the anti-apoptotic gene transcription of survivin, Mcl-1, Bcl-2, and XIAP in both A549 cells and NCI-H446 cells. Furthermore, 12e did not show any inhibitory activity on Topo I, which is involved in hematopoietic toxicity. In vivo, 12e showed similar antitumor efficacy to FL118 but lower toxicity. Our findings indicate that 12e is a promising therapeutic agent for cancer treatment, and the core structure of FL118 represents a promising platform to generate novel FL118-based antitumor drugs.
Collapse
Affiliation(s)
- Xiufen Dai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
| | - Guanzhao Wu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
| | - Yixuan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
| | - Xin Qi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
| | - Jing Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.D.); (G.W.); (Y.Z.); (X.Z.); (R.Y.); (T.J.)
- Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
11
|
Li QH, Liu ZZ, Ge YΝ, Liu X, Xie XD, Zheng ZD, Ma YH, Liu B. Small breast epithelial mucin promotes the invasion and metastasis of breast cancer cells via promoting epithelial‑to‑mesenchymal transition. Oncol Rep 2020; 44:509-518. [PMID: 32627029 PMCID: PMC7336452 DOI: 10.3892/or.2020.7640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to observe the influence of the small breast epithelial mucin (MUCL1) (also known as SBEM) gene on migration and invasion ability of breast cancer cells and to explore the potentially involved mechanism. SBEM‑interference plasmid and SBEM‑overexpressing plasmid were constructed. SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 breast cancer cells were established by lentivirus‑mediated stable transfection method. The scratch wound‑healing assay and Transwell chamber experiment were used to detect the influence of the SBEM gene on the migration and invasion abilities of MCF‑7 and MDA‑MB‑231 cells. Real‑time PCR (polymerase chain reaction) and western blotting were used to detect the expression of epithelial‑to‑mesenchymal transition (EMT)‑related markers and regulators. The cell morphology was observed after transfection. The SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 cells were established successfully. The migration and invasion abilities were decreased after SBEM was downregulated, and were increased after SBEM was overexpressed both in MCF‑7 and MDA‑MB‑231 cell lines. The mRNA and protein expressions of N‑cadherin, Twist and vimentin were elevated following SBEM overexpression, while the expression of E‑cadherin and claudin‑1 were found to be decreased following SBEM overexpression. In conclusion, SBEM has the potential to promote migration and invasion ability of breast cancer cells via promoting epithelial‑to‑mesenchymal transition.
Collapse
Affiliation(s)
- Qiu-Hua Li
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Zhao-Zhe Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Ya-Νan Ge
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xing Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xiao-Dong Xie
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Zhen-Dong Zheng
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yue-Hai Ma
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Bin Liu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
12
|
Dong MN, Xiao Y, Li YF, Wang DM, Qu YP, Fang TW, Li H, Liu MW. Amelioration of paraquat-induced pulmonary fibrosis in mice by regulating miR-140-5p expression with the fibrogenic inhibitor Xuebijing. Int J Immunopathol Pharmacol 2020; 34:2058738420923911. [PMID: 32462952 PMCID: PMC7262989 DOI: 10.1177/2058738420923911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
Intravenous Xuebijing (XBJ) therapy suppresses paraquat (PQ)-induced pulmonary fibrosis. However, the mechanism underlying this suppression remains unknown. This work aimed to analyze the miR-140-5p-induced effects of XBJ injection on PQ-induced pulmonary fibrosis in mice. The mice were arbitrarily assigned to four groups. The model group was administered with PQ only. The PQ treatment group was administered with PQ and XBJ. The control group was administered with saline only. The control treatment group was administered with XBJ only. The miR-140-5p and miR-140-5p knockout animal models were overexpressed. The gene expression levels of miR-140-5p, transglutaminase-2 (TG2), β-catenin, Wnt-1, connective tissue growth factor (CTGF), mothers against decapentaplegic homolog (Smad), and transforming growth factor-β1 (TGF-β1) in the lungs were assayed with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis. The levels of TGF-β1, CTGF, and matrix metalloproteinase-9 (MMP-9) in the bronchoalveolar lavage fluid were assessed by enzyme-linked immunosorbent assay (ELISA). Hydroxyproline (Hyp) levels and pulmonary fibrosis were also scored. After 14 days of PQ induction of pulmonary fibrosis, AdCMV-miR-140-5p, and XBJ upregulated miR-140-5p expression; blocked the expressions of TG2, Wnt-1, and β-catenin; and decreased p-Smad2, p-Smad3, CTGF, MMP-9, and TGF-β1 expressions. In addition, Hyp and pulmonary fibrosis scores in XBJ-treated mice decreased. Histological results confirmed that PQ-induced pulmonary fibrosis in XBJ-treated lungs was attenuated. TG2 expression and the Wnt-1/β-catenin signaling pathway were suppressed by the elevated levels of miR-140-5p expression. This inhibition was pivotal in the protective effect of XBJ against PQ-induced pulmonary fibrosis. Thus, XBJ efficiently alleviated PQ-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Min-na Dong
- Department of Emergency, First Hospital
Affiliated to Kunming Medical University, Kunming, China
| | - Yun Xiao
- Intensive Care Unit, The Third
Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun-fei Li
- Department of Elderly Cardiovascular
Diseases, First Hospital Affiliated to Kunming Medical University, Kunming,
China
| | - Dong-mei Wang
- Yunnan Green Field Biological
Pharmaceutical Co., Ltd., Kunming, China
| | - Ya-ping Qu
- Department of Postgraduate, Kunming
Medical University, Kunming, China
| | - Tian-wen Fang
- Department of Postgraduate, Kunming
Medical University, Kunming, China
| | - Hui Li
- Yunnan Green Field Biological
Pharmaceutical Co., Ltd., Kunming, China
| | - Ming-wei Liu
- Department of Emergency, First Hospital
Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Li X, Li C, Bi H, Bai S, Zhao L, Zhang J, Qi C. Targeting ZEB2 By microRNA-129 In Non-Small Cell Lung Cancer Suppresses Cell Proliferation, Invasion And Migration Via Regulating Wnt/β-Catenin Signaling Pathway And Epithelial-Mesenchymal Transition. Onco Targets Ther 2019; 12:9165-9175. [PMID: 31807001 PMCID: PMC6842312 DOI: 10.2147/ott.s217536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction Non-small cell lung cancer (NSCLC) is a common cause of deaths all over the world. Emerging evidence has indicated that microRNA (miR) play key roles in NSCLC progression. We aimed to determine the functions of miR-129 in NSCLC. miR-129 was dramatically downregulated in NSCLC tissue samples and cells. The decreased miR-129 was found to be associated with poorer prognosis and malefic phenotype of NSCLC patients. We demonstrated that miR-129 upregulation could inhibit NSCLC cell growth. Furthermore, we also sought the molecular mechanism by which miR-129 repressed NSCLC development. Methods QRT-PCR was applied to detect the expressions of miR-129 in 51 pairs of NSCLC tissue samples. We further performed the Kaplan–Meier analysis to determine the association between miR-129 expressions and the survival rate of NSCLC patients. We then measured the expression levels of miR-129 in NSCLC cell lines. After that, MTT assays were performed to determine the influence of miR-129 on A549 cell proliferation. Transwell assay was then conducted to explore the biological functions of miR-129 in invasion and migration of NSCLC cells. Results Results showed that ZEB2 was directly targeted by miR-129 in NSCLC cell lines. Moreover, miR-129 restoration could inhibit EMT and Wnt/β-catenin in NSCLC cell lines. Conclusion In short, all these results indicated that miR-129/ZEB2 axis maybe a useful diagnostic and prognostic biomarker for NSCLC treatment.
Collapse
Affiliation(s)
- Xingtao Li
- Department of Clinical Laboratory, Jinan City People's Hospital, Laiwu 271100, People's Republic of China
| | - Chunhong Li
- Department of Public Health, Jinan Zhangqiu District Hospital of TCM, Jinan 250200, People's Republic of China
| | - Hongmei Bi
- Department of Respiratory Medicine, The Third People's Hospital of Qingdao, Qingdao 266041, People's Republic of China
| | - Shufang Bai
- Department of Ultrasound, The People's Hospital of Zhangqiu Area, Jinan 250200, People's Republic of China
| | - Lin Zhao
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao 276826, People's Republic of China
| | - Jing Zhang
- Department of Cardiothoracic Vascular Surgery, People's Hospital of Rizhao, Rizhao 276826, People's Republic of China
| | - Chunhui Qi
- Department of Pharmacy, Weifang People's Hospital, Weifang 261041, People's Republic of China
| |
Collapse
|
14
|
Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:368. [PMID: 31439015 PMCID: PMC6704566 DOI: 10.1186/s13046-019-1362-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Survivin (also named BIRC5) is a well-known cancer therapeutic target. Since its discovery more than two decades ago, the use of survivin as a target for cancer therapeutics has remained a central goal of survivin studies in the cancer field. Many studies have provided intriguing insight into survivin's functional role in cancers, thus providing promise for survivin as a cancer therapeutic target. Despite this, moving survivin-targeting agents into and through the clinic remains a challenge. In order to address this challenge, we may need to rethink current strategies in order to develop a new mindset for targeting survivin. In this Review, we will first summarize the current survivin mechanistic studies, and then review the status of survivin cancer therapeutics, which is classified into five categories: (i) survivin-partner protein interaction inhibitors, (ii) survivin homodimerization inhibitors, (iii) survivin gene transcription inhibitors, (iv) survivin mRNA inhibitors and (v) survivin immunotherapy. We will then provide our opinions on cancer therapeutics using survivin as a target, with the goal of stimulating discussion that might facilitate translational research for discovering improved strategies and/or more effective anticancer agents that target survivin for cancer therapy.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA. .,Developmental Therapeutics Program, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.
| | - Ieman Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Canget BioTekpharma LLC, Buffalo, New York, USA
| |
Collapse
|
15
|
Zhou L, Weng Q, Zheng Y, Zhou Y, Li Q, Li F. Uptake and efflux of FL118 and two FL118 derivatives in 3D cell model. Cytotechnology 2019; 71:785-795. [PMID: 31309350 PMCID: PMC6663949 DOI: 10.1007/s10616-019-00322-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Drug uptake and efflux are two of the critical factors required in order to be able to define drug efficacy. This study aims to investigate cytotoxicity and uptake mechanisms of two FL118 analogues (7-Q20 and val-FL118) in parallel with FL118 in three-dimensional multi-cellular spheroids model. The influence of compound concentration, time, temperature, cell lines, and the inhibitors of P-gp, BCRP and LAT1 on drug uptake and efflux were investigated. In vitro cytotoxicity studies revealed that FL118, 7-Q20 and val-FL118 exhibited sensitive cytotoxicity to the HCT-116 cell line and the water-soluble compound 7-Q20 showed the lowest IC50. Cellular uptake and efflux of FL118 was independent of efflux pump proteins. Uptake and efflux of 7-Q20 were affected by P-gp, which was one of reasons that caused a lower uptake at 37 °C than at 4 °C. The carrier protein LAT1 played a role in the cellular intakes of val-FL118. These findings provided basic information for FL118 and the two novel FL118 derivatives for further development.
Collapse
Affiliation(s)
- Leilei Zhou
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou City, 310014, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qi Weng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yixin Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuqin Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou City, 310014, China.
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
16
|
Miao H, Gao J, Mou Z, Wang B, Zhang L, Su L, Han Y, Luan Y. Design, synthesis and biological evaluation of 4-piperidin-4-yl-triazole derivatives as novel histone deacetylase inhibitors. Biosci Trends 2019; 13:197-203. [DOI: 10.5582/bst.2019.01055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He Miao
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Zishuo Mou
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Baolei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University
| | - Li Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
| | - Li Su
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
| | - Yantao Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University
| |
Collapse
|
17
|
Zhang J, Liu S, Zhang D, Ma Z, Sun L. Homeobox D10, a tumor suppressor, inhibits the proliferation and migration of esophageal squamous cell carcinoma. J Cell Biochem 2019; 120:13717-13725. [PMID: 30938888 DOI: 10.1002/jcb.28644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common types of esophageal cancer, which is the sixth leading cause of cancer death globally. Homeobox D10 (HOXD10) is a member of the homeobox (HOX) gene family and has been reported to act as a tumor suppressor. However, the potential role of HOXD10 in ESCC has not been reported. Thus, the aim of this study was to examine the expression and function of HOXD10 in ESCC. The expressions of HOXD10 in human ESCC tissues and cell lines were detected by quantitative reverse transcription polymerase chain reaction and Western blot. The HOXD10 overexpressing cell lines were established, then CCK-8 and Transwell assays were performed to examine cell proliferation, migration, and invasion, respectively. The expression of EMT-related proteins and signaling pathway-related proteins were detected by Western blot. Our results showed that HOXD10 is lowly expressed in ESCC tissues as well as in ESCC cell lines. Ectopic overexpression of HOXD10 inhibited cell proliferation, migration, and invasion of ESCC cells (P < 0.05). HOXD10 overexpression repressed the epithelial-mesenchymal transition (EMT) process in ESCC cells. Besides, HOXD10 overexpression suppressed the activation of PI3K/AKT/mTOR signaling pathway. PI3K/Akt agonist, insulin-like growth factor-1, reversed the inhibitory effects of HOXD10 on cell proliferation and migration in ESCC cells. Additional in vivo study proved that ectopic expression of HOXD10 caused an obvious inhibitory effect on the tumor growth. These findings indicated that overexpression of HOXD10 suppressed the proliferation, migration, and invasion via regulating the PI3K/AKT/mTOR signaling pathway in ESCC cells. Thus, targeting HOXD10 may be considered as a therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenchuan Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liangzhang Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|