1
|
Chen X, Li C, Zhao J, Liu Y, Zhao Z, Wang Z, Li Y, Wang Y, Guo L, Li L, Chen C, Bai B, Wang S. mPPTMP195 nanoparticles enhance fracture recovery through HDAC4 nuclear translocation inhibition. J Nanobiotechnology 2024; 22:261. [PMID: 38760744 PMCID: PMC11100250 DOI: 10.1186/s12951-024-02436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024] Open
Abstract
Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.
Collapse
Affiliation(s)
- Xinping Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chengwei Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiyu Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yunxiang Liu
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhizhong Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhenyu Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yue Li
- Department of Biochemistry, Shanxi Medical University, Basic Medical College, Taiyuan, 030001, PR China
| | - Yunfei Wang
- Department of Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, 030032, PR China
| | - Lixia Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lu Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
2
|
Ji H, Pan Q, Cao R, Li Y, Yang Y, Chen S, Gu Y, Qian D, Guo Y, Wang L, Wang Z, Xiao L. Garcinone C attenuates RANKL-induced osteoclast differentiation and oxidative stress by activating Nrf2/HO-1 and inhibiting the NF-kB signaling pathway. Heliyon 2024; 10:e25601. [PMID: 38333852 PMCID: PMC10850749 DOI: 10.1016/j.heliyon.2024.e25601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis is the result of osteoclast formation exceeding osteoblast production, and current osteoporosis treatments targeting excessive osteoclast bone resorption have serious adverse effects. There is a need to fully understand the mechanisms of osteoclast-mediated bone resorption, identify new drug targets, and find better drugs to treat osteoporosis. Gar C (Gar C) is a major naturally occurring phytochemical isolated from mangosteen, and is a derivative of the naturally occurring phenolic antioxidant lutein. We used an OP mouse model established by ovariectomy (OVX). We found that treatment with Gar C significantly increased bone mineral density and significantly decreased the expression of TRAP, NFATC1 and CTSK relative to untreated OP mice. We found that Garcinone C could disrupt osteoclast activation and resorption functions by inhibiting RANKL-induced osteoclast differentiation as well as inhibiting the formation of multinucleated osteoclasts. Immunoblotting showed that Gar C downregulated the expression of osteoclast-related proteins. In addition, Gar C significantly inhibited RANKL-induced ROS production and affected NF-κB activity by inhibiting phosphorylation Formylation of P65 and phosphorylation and degradation of ikba. These data suggest that Gar C significantly reduced OVX-induced osteoporosis by inhibiting osteoclastogenesis and oxidative stress in bone tissue. Mechanistically, this effect was associated with inhibition of the ROS-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Hongyun Ji
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Qian Pan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Ruihong Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Daoyi Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| |
Collapse
|
3
|
Li H, Deng W, Yang J, Lin Y, Zhang S, Liang Z, Chen J, Hu M, Liu T, Mo G, Zhang Z, Wang D, Gu P, Tang Y, Yuan K, Xu L, Xu J, Zhang S, Li Y. Corylifol A suppresses osteoclastogenesis and alleviates ovariectomy-induced bone loss via attenuating ROS production and impairing mitochondrial function. Biomed Pharmacother 2024; 171:116166. [PMID: 38244329 DOI: 10.1016/j.biopha.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Osteoporosis is a systemic disease characterized by an imbalance in bone homeostasis, where osteoblasts fail to fully compensate for the bone resorption induced by osteoclasts. Corylifol A, a flavonoid extracted from Fructus psoraleae, has been identified as a potential treatment for this condition. Predictions from network pharmacology and molecular docking studies suggest that Corylifol A exhibits strong binding affinity with NFATc1, Nrf2, PI3K, and AKT1. Empirical evidence from in vivo experiments indicates that Corylifol A significantly mitigates systemic bone loss induced by ovariectomy by suppressing both the generation and activation of osteoclasts. In vitro studies further showed that Corylifol A inhibited the activation of PI3K-AKT and MAPK pathways and calcium channels induced by RANKL in a time gradient manner, and specifically inhibited the phosphorylation of PI3K, AKT, GSK3 β, ERK, CaMKII, CaMKIV, and Calmodulin. It also diminishes ROS production through Nrf2 activation, leading to a decrease in the expression of key regulators such as NFATcl, C-Fos, Acp5, Mmp9, and CTSK that are involved in osteoclastogenesis. Notably, our RNA-seq analysis suggests that Corylifol A primarily impacts mitochondrial energy metabolism by suppressing oxidative phosphorylation. Collectively, these findings demonstrate that Corylifol A is a novel inhibitor of osteoclastogenesis, offering potential therapeutic applications for diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- HaiShan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Deng
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JiaMin Yang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YueWei Lin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ShiYin Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ZiXuan Liang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JunChun Chen
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia; ShenZhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - MinHua Hu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Teng Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - GuoYe Mo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - DongPing Wang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Gu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YongChao Tang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Yuan
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LiangLiang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JiaKe Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia; ShenZhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - ShunCong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - YongXian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Huang H, Chen J, Lin Z, Lin X. Rubiadin Regulates Bone Metabolism in Ovariectomized Rat Model by Inhibition of osteoclast formation and differentiation. ChemistrySelect 2023. [DOI: 10.1002/slct.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hui Huang
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| | - Jian Chen
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| | - Zhengkun Lin
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| | - Xiaomei Lin
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| |
Collapse
|
5
|
Han EJ, Zhang C, Kim HS, Kim JY, Park SM, Jung WK, Ahn G, Cha SH. Sargachromenol Isolated from Sargassum horneri Attenuates Glutamate-Induced Neuronal Cell Death and Oxidative Stress through Inhibition of MAPK/NF-κB and Activation of Nrf2/HO-1 Signaling Pathway. Mar Drugs 2022; 20:710. [PMID: 36421988 PMCID: PMC9695719 DOI: 10.3390/md20110710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress-induced neuronal cell loss is considered to be the major mechanism underlying the pathogenesis of neurodegenerative diseases, which could be induced by a high concentration of glutamate. In this study, sargachromenol (SC) was isolated from a marine brown seaweed Sargassum horneri (S. horneri) and its neuroprotective effects against glutamate-induced oxidative stress in HT22 cells were investigated. An MTT assay was applied to assess the cytotoxicity of the SC, and the efficacies of SC were determined by flow cytometry, an analysis of ROS production, quantitative Real-Time PCR, and the Western blot assay. Our results showed that the pretreatment of SC reduced glutamate-induced apoptosis in HT22 cells via inhibiting the sub-G1 population, DNA fragmentation, and nuclear condensation, as well as up-regulating anti-apoptotic protein (Bcl-2) and down-regulating apoptotic proteins (Bax, p53, cleaved-PARP, caspase-3, caspase-9, and cytochrome c). Additionally, SC attenuated glutamate-induced oxidative stress by suppressing mitogen-activated protein kinases (MAPKs;ERK, JNK, and p38) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling (IκBα and NF-κB p65), while activating nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling (Nrf2; HO-1, and NQO-1). Our results suggest that SC could be used as a pharmacological candidate for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Chunying Zhang
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Sang-Muyn Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, New Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| |
Collapse
|
6
|
Seong Choi K, Shin TS, Chun J, Ahn G, Jeong Han E, Kim MJ, Kim JB, Kim SH, Kho KH, Heon Kim D, Shim SY. Sargahydroquinoic acid isolated from Sargassum serratifolium as inhibitor of cellular basophils activation and passive cutaneous anaphylaxis in mice. Int Immunopharmacol 2022; 105:108567. [PMID: 35114442 DOI: 10.1016/j.intimp.2022.108567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Basophils and mast cells are characteristic effector cells in allergic reactions. Sargahydorquinoic acid (SHQA), a compound isolated from Sargassum serratifolium (marine alga), possesses various biochemical properties, including potent antioxidant activities. The objective of the present study was to investigate inhibitory effects of SHQA on the activation of human basophilic KU812F cells induced by phorbol myristate acetate and A23187 (PMACI), a calcium ionophore. Furthermore, we confirmed the inhibitory effects of SHQA on the activation of rat basophilic leukemia (RBL)-2H3 cells induced by compound 48/80 (com 48/80), bone marrow-derived mast cells (BMCMCs) induced by anti-dinitrophenyl(DNP)-immunoglobulin E (IgE)/DNP-bovine serum albumin (BSA), DNP/IgE and on the reaction of passive cutaneous anaphylaxis (PCA) mediated by IgE. SHQA reduced PMACI-induced intracellular reactive oxygen species (ROS) and calcium levels. Western blot analysis revealed that SHQA downregulated the activation of ERK, p38, and NF-κB in a dose-dependent manner. Moreover, SHQA suppressed the production and gene expression of various cytokines, including interleukin (IL)-1 β, IL-4, IL-6, and IL-8 in PMACI-induced KU812F cells and IL-4 and tumor necrosis factor (TNF)- α in com 48/80-induced RBL-2H3 cells. It also determined the inhibition of PMACI, com 48/80- and IgE/DNP-induced degranulation by reducing the release of β -hexosaminidase. Furthermore, it attenuated the IgE/DNP-induced PCA reaction in the ears of BALB/c mice. These results suggest that SHQA isolated from S. serratifolium is a potential therapeutic functional food material for inhibiting effector cell activation in allergic reactions and anaphylaxis in animal model.
Collapse
Affiliation(s)
- Kap Seong Choi
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea; Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kang-Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
7
|
Xu Q, Cao Z, Xu J, Dai M, Zhang B, Lai Q, Liu X. Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases. J Drug Target 2021; 30:394-412. [PMID: 34859718 DOI: 10.1080/1061186x.2021.2013488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bone-destructive diseases, caused by overdifferentiation of osteoclasts, reduce bone mass and quality, and disrupt bone microstructure, thereby causes osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis. Osteoclasts, the only multinucleated cells with bone resorption function, are derived from haematopoietic progenitors of the monocyte/macrophage lineage. The regulation of osteoclast differentiation is considered an effective target for the treatment of bone-destructive diseases. Natural plant-derived products have received increasing attention in recent years due to their good safety profile, the preference of natural compounds over synthetic drugs, and their potential therapeutic and preventive activity against osteoclast-mediated bone-destructive diseases. In this study, we reviewed the research progress of the potential antiosteoclast active compounds extracted from medicinal plants and their molecular mechanisms. Active compounds from natural plants that inhibit osteoclast differentiation and functions include flavonoids, terpenoids, quinones, glucosides, polyphenols, alkaloids, coumarins, lignans, and limonoids. They inhibit bone destruction by downregulating the expression of osteoclast-specific marker genes (CTSK, MMP-9, TRAP, OSCAR, DC-STAMP, V-ATPase d2, and integrin av3) and transcription factors (c-Fos, NFATc1, and c-Src), prevent the effects of local factors (ROS, LPS, and NO), and suppress the activation of various signalling pathways (MAPK, NF-κB, Akt, and Ca2+). Therefore, osteoclast-targeting natural products are of great value in the prevention and treatment of bone destructive diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyou Cao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - JiaQiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Che J, Yang J, Zhao B, Shang P. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol 2021; 906:174219. [PMID: 34081904 DOI: 10.1016/j.ejphar.2021.174219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance. Therefore, regulating the production of inflammatory factors and reactive oxygen species may become a strategy for the treatment of osteoporosis. Solid evidence showed that the overexpression of HO-1 compensates high oxidation levels by increasing intracellular antioxidant levels and reduces inflammation by suppressing pro-inflammatory factors. Some extracts can target HO-1 and ameliorate osteoporosis. However, no systematic report is available on therapies targeting HO-1 to combat osteoporosis. Therefore, this review summarizes the biological characteristics of HO-1, and the relationship between inflammatory response and reactive oxygen species production regulated by HO-1 and osteoporosis. The understanding of the role of HO-1 in osteoporosis may provide ideas for a potential clinical treatment and new drugs targeting HO-1.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| | - Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
9
|
Potential Anti-Aging Substances Derived from Seaweeds. Mar Drugs 2020; 18:md18110564. [PMID: 33218066 PMCID: PMC7698806 DOI: 10.3390/md18110564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Aging is a major risk factor for many chronic diseases, such as cancer, cardiovascular disease, and diabetes. The exact mechanisms underlying the aging process are not fully elucidated. However, a growing body of evidence suggests that several pathways, such as sirtuin, AMP-activated protein kinase, insulin-like growth factor, autophagy, and nuclear factor erythroid 2-related factor 2 play critical roles in regulating aging. Furthermore, genetic or dietary interventions of these pathways can extend lifespan by delaying the aging process. Seaweeds are a food source rich in many nutrients, including fibers, polyunsaturated fatty acids, vitamins, minerals, and other bioactive compounds. The health benefits of seaweeds include, but are not limited to, antioxidant, anti-inflammatory, and anti-obese activities. Interestingly, a body of studies shows that some seaweed-derived extracts or isolated compounds, can modulate these aging-regulating pathways or even extend lifespans of various animal models. However, few such studies have been conducted on higher animals or even humans. In this review, we focused on potential anti-aging bioactive substances in seaweeds that have been studied in cells and animals mainly based on their anti-aging cellular and molecular mechanisms.
Collapse
|
10
|
Zhang Y, Ma C, Liu C, Wu W. NF-κB promotes osteoclast differentiation by overexpressing MITF via down regulating microRNA-1276 expression. Life Sci 2020; 258:118093. [PMID: 32673666 DOI: 10.1016/j.lfs.2020.118093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nuclear factor-kappa B (NF-κB) is an important nuclear transcription factor in cells, involving in a series of processes such as cell proliferation, apoptosis, and differentiation. In this study, we explored the specific mechanism of NF-κB on the differentiation of osteoclasts. METHODS MicroRNAs (miRNAs) expression microarray data GSE105027 related to osteoarthritis was obtained to screen out the differentially expressed miRNA. Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages, followed by induction to osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). ELISA and RT-qPCR were conducted to examine IL-6 and IL-1β expression. The binding of NF-κB to the miR-1276 promoter region was demonstrated by ChIP assay, and targeting relationship between miR-1276 and MITF was verified by dual luciferase reporter assay. KK, iKBα, NF-kB, p-IKK, p-iKBα, p-NF-kB expression was analyzed by western blot. NF-κB and miR-1276 expression in osteoclasts was examined later. After gain- and less-of-function study, the effects on osteoclast differentiation were detected by TRAP-positive osteoclasts, TRAP activity, TRAP-5b content, F-Actin expression, as well as osteoclast differentiation marker genes expression. RESULTS NF-κB was activated in osteoclasts, and down-regulation of NF-κB inhibited osteoclast differentiation. Next, miR-1276 was downregulated in osteoclasts after differentiation from monocytes. Meanwhile, NF-κB decreased the expression of miR-1276 by binding to the miR-1276 promoter, thereby elevating MITF expression, thereby promoting osteoclast differentiation. CONCLUSION In summary, NF-κB promoted osteoclast differentiation through downregulating miR-1276 to upregulate MITF.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Chunshui Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
11
|
Li W, Sun Y. Nrf2 is required for suppressing osteoclast RANKL-induced differentiation in RAW 264.7 cells via inactivating cannabinoid receptor type 2 with AM630. Regen Ther 2020; 14:191-195. [PMID: 32154333 PMCID: PMC7056625 DOI: 10.1016/j.reth.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/01/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Nuclear factor-erythroid 2-related factor 2 (Nrf2) is shown to as a negative-regulatory cause in osteoclasts differentiation. Cannabinoid receptor type 2 (CB2) is verified to regulate osteoclast differentiation, though with diversed results. METHODS In current research, we studied the Nrf2 role on osteoclast differentiation regulation with the CB2-selective agonists, AM1241, or CB2-selective antagonist, AM630, in RAW 264.7 macrophages. The nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation activator was confirmed by tartrate-resistant acid phosphatase (TRAP) staining as well as the TRAP activity analysis. In addition, Nrf2 siRNA was used to characterize the function of Nrf2 during osteoclast differentiation. We analyzed HO-1 and Nrf2 proteins levels with western blotting. RESULTS The results showed that AM1241 promoted, while AM630 suppressed, osteoclast differentiation in RAW 264.7 cells. Both AM1241 and AM630 increased the expressions of HO-1 and Nrf2. Nrf2 silencing promoted osteoclast differentiation and abolished the function of AM630 to inhibit osteoclast differentiation. CONCLUSIONS Our results suggested that Nrf2 was required for inhibiting osteoclast differentiation induced by RANKL of RAW 264.7 cells by AM630, which may provide the insights of a novel method to treat osteoclastogenic bone disease.
Collapse
Affiliation(s)
- Wan Li
- Geriatric Cardiovascular Department, The First Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Yongxin Sun
- Department of Rehabilitation, The First Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Harper E, Rochfort KD, Smith D, Cummins PM. RANKL treatment of vascular endothelial cells leading to paracrine pro-calcific signaling involves ROS production. Mol Cell Biochem 2019; 464:111-117. [DOI: 10.1007/s11010-019-03653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
|
13
|
de Sousa LM, Dos Santos Alves JM, da Silva Martins C, Pereira KMA, Goes P, Gondim DV. Immunoexpression of canonical Wnt and NF-κB signaling pathways in the temporomandibular joint of arthritic rats. Inflamm Res 2019; 68:889-900. [PMID: 31372663 DOI: 10.1007/s00011-019-01274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the participation of canonical Wnt and NF-κB signaling pathways in an experimental model of chronic arthritis induced by methylated bovine serum albumin (mBSA) in rat temporomandibular joint (TMJ). MATERIALS AND METHODS Wistar rats were sensitized by mBSA+Complete Freund Adjuvant (CFA)/Incomplete Freund Adjuvant (IFA) on the first 14 days (1 ×/week). Subsequently, they received 1, 2 or 3 mBSA or saline solution injections into the TMJ (1 ×/week). Hypernociceptive threshold was assessed during the whole experimental period. 24 h after the mBSA injections, the TMJs were removed for histopathological and immunohistochemical analyses for TNF-α, IL-1β, NF-κB, RANKL, Wnt-10b, β-catenin and DKK1. RESULTS The nociceptive threshold was significantly reduced after mBSA injections. An inflammatory infiltrate and thickening of the synovial membrane were observed only after mBSA booster injections. Immunolabeling of TNF-α, IL-1β and Wnt-10b was increased in the synovial membrane in arthritic groups. The immunoexpression of nuclear β-catenin was significantly higher only in the group that received 2 booster TMJ injections. However, NF-κB, RANKL and DKK1 immunoexpression were increased only in animals with 3 mBSA intra-articular injections. CONCLUSION Our results suggest that canonical Wnt and NF-κB signaling pathways participate in the hypernociception and inflammatory response in TMJ synovial membrane during the development of rheumatoid arthritis in rats.
Collapse
Affiliation(s)
- Luane Macêdo de Sousa
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil
| | - Joana Maria Dos Santos Alves
- Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição da Silva Martins
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil
| | - Karuza Maria Alves Pereira
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil.,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paula Goes
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil.,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Delane Viana Gondim
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil. .,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Jeong JW, Ji SY, Lee H, Hong SH, Kim GY, Park C, Lee BJ, Park EK, Hyun JW, Jeon YJ, Choi YH. Fermented Sea Tangle ( Laminaria japonica Aresch) Suppresses RANKL-Induced Osteoclastogenesis by Scavenging ROS in RAW 264.7 Cells. Foods 2019; 8:foods8080290. [PMID: 31357503 PMCID: PMC6723172 DOI: 10.3390/foods8080290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sea tangle (Laminaria japonica Aresch), a brown alga, has been used for many years as a functional food ingredient in the Asia-Pacific region. In the present study, we investigated the effects of fermented sea tangle extract (FST) on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-stimulated osteoclast differentiation, using RAW 264.7 mouse macrophage cells. FST was found to inhibit the RANKL-stimulated activation of tartrate-resistance acid phosphatase (TRAP) and F-actin ring structure formation. FST also down-regulated the expression of osteoclast marker genes like TRAP, matrix metalloproteinase-9, cathepsin K and osteoclast-associated receptor by blocking RANKL-induced activation of NF-κB and expression of nuclear factor of activated T cells c1 (NFATc1), a master transcription factor. In addition, FST significantly abolished RANKL-induced generation of reactive oxygen species (ROS) by activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and its transcriptional targets. Hence, it seems likely that FST may have anti-osteoclastogenic potential as a result of its ability to inactivate the NF-κB-mediated NFATc1 signaling pathway and by reducing ROS production through activation of the Nrf2 pathway. Although further studies are needed to inquire its efficacy in vivo, FST appears to have potential use as an adjunctive or as a prophylactic treatment for osteoclastic bone disease.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co. Ltd., Busan 46048, Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
15
|
Yu D, Zhao D, Yang D, Yang G. [Simvastatin promotes murine osteoclasts apoptosis in vitro through NFATc1 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:672-678. [PMID: 31270045 DOI: 10.12122/j.issn.1673-4254.2019.06.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the mechanism by which simvastatin (SIM) regulates osteoclast apoptosis. METHODS Murine macrophage RAW264.7 cells were divided into 5 groups, namely group A (control group), group B (sRANKL+ M-CSF), group C (SIM+sRANKL+M-CSF), group D (VIVIT peptide+sRANKL+ M-CSF), and group E (SIM+VIVIT peptide+sRANKL+M-CSF). WST-1 assay was used to assess the effects of simvastatin on the proliferation activity of the osteoclasts, and flow cytometry was performed to analyze the effects of SIM and VIVIVIT peptide (a NFATc1 pathway inhibitor) on apoptosis of the osteoclasts. The translocation of NFATc1 into the nucleus was investigated using immunofluorescence assay, and Western blotting was employed to assess the effect of SIM on the phosphorylation of NFATc1 in the nucleus. RESULTS WST-1 assay showed that SIM (1×10-6 mol/L) treatment for 24 and 48 h significantly inhibited the proliferation of the osteoclasts (P=0.039 and 0.022, respectively). Compared with the control group, the SIM-treated osteoclasts exhibited significantly reduced cell percentage in G0/G1 phase (P=0.041) and increased cells in sub-G1 phase (P=0.028) with obvious cell apoptosis. DAPI staining and flow cytometry showed that both SIM and VIVIVIT peptide alone significantly promoted osteoclast apoptosis (P=0.002 and 0.015, respectively), and their combination produced a similar pro-apoptosis effect (P=0.08). Immunofluorescence and Western blotting showed that SIM significantly inhibited the intranuclear translocation of NFATc1 and the phosphorylation of NFATc1 pathway protein (P=0.013). CONCLUSIONS SIM promotes osteoclast apoptosis through NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Dongdong Yu
- Department of Orthopedics, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Danyang Zhao
- Department of Neurology, Shenyang First People's Hospital, Shenyang 110041, China
| | - Dongxiang Yang
- Department of Orthopedics, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Guanlin Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, 110847
| |
Collapse
|
16
|
Protective Effects of Fermented Oyster Extract against RANKL-Induced Osteoclastogenesis through Scavenging ROS Generation in RAW 264.7 Cells. Int J Mol Sci 2019; 20:ijms20061439. [PMID: 30901917 PMCID: PMC6471417 DOI: 10.3390/ijms20061439] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Excessive bone resorption by osteoclasts causes bone loss-related diseases and reactive oxygen species (ROS) act as second messengers in intercellular signaling pathways during osteoclast differentiation. In this study, we explored the protective effects of fermented oyster extract (FO) against receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in murine monocyte/macrophage RAW 264.7 cells. Our results showed that FO markedly inhibited RANKL-induced activation of tartrate-resistant acid phosphatase and formation of F-actin ring structure. Mechanistically, FO has been shown to down-regulate RANKL-induced expression of osteoclast-specific markers by blocking the nuclear translocation of NF-κB and the transcriptional activation of nuclear factor of activated T cells c1 (NFATc1) and c-Fos. Furthermore, FO markedly diminished ROS production by RANKL stimulation, which was associated with blocking the expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) and its regulatory subunit Rac-1. However, a small interfering RNA (siRNA) targeting NOX1 suppressed RANKL-induced expression of osteoclast-specific markers and production of ROS and attenuated osteoclast differentiation as in the FO treatment group. Collectively, our findings suggest that FO has anti-osteoclastogenic potential by inactivating the NF-κB-mediated NFATc1 and c-Fos signaling pathways and inhibiting ROS generation, followed by suppression of osteoclast-specific genes. Although further studies are needed to demonstrate efficacy in in vivo animal models, FO may be used as an effective alternative agent for the prevention and treatment of osteoclastogenic bone diseases.
Collapse
|