1
|
Salomon I. Neurobiological Insights Into Cerebral Palsy: A Review of the Mechanisms and Therapeutic Strategies. Brain Behav 2024; 14:e70065. [PMID: 39378294 PMCID: PMC11460637 DOI: 10.1002/brb3.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) is a common neurodevelopmental disorder characterized by impaired mobility and posture caused by brain injury or abnormal development. CP relates to a variety of neurological mechanisms and pathways that impact the type and severity of motor disability, as well as comorbidities. The heterogeneity in clinical phenotype, pathogenesis, and etiology poses significant challenges for effective therapeutic intervention. OBJECTIVES The review aims to provide a comprehensive analysis of the neurobiological mechanisms underlying CP and evaluate current and prospective therapeutic strategies, highlighting the necessity for targeted interventions to address the disorder's multifaceted nature. METHODS A thorough literature review was conducted, focusing on studies published in peer-reviewed journals that explore the pathophysiological mechanisms, clinical interventions, and therapeutic strategies for CP. RESULTS The pathogenesis of CP involves a complex interplay of genetic, environmental, and perinatal factors leading to brain injury. Inflammatory processes, oxidative stress, and excitotoxicity are critical in CP development. Current therapeutic approaches primarily focus on symptom management through physical and occupational therapy, as well as pharmacological interventions. Emerging therapies, including anti-inflammatory agents, antioxidants, and neuroprotective and neurotrophic agents, show potential but require further validation. Notably, although steroids provide anti-inflammatory benefits, their use in pediatric patients raises concerns regarding long-term adverse effects such as osteoporosis. CONCLUSION Despite advances in understanding CP's neurobiological underpinnings, effective therapeutic targets remain elusive. A comprehensive approach addressing CP's heterogeneity is essential. Future research should emphasize in-depth evaluations of the efficacy and safety of therapeutic agents, particularly in pediatric populations, to develop targeted and effective treatments for CP.
Collapse
Affiliation(s)
- Izere Salomon
- Department of General Medicine and SurgeryUniversity of Rwanda College of Medicine and Health SciencesKigaliRwanda
| |
Collapse
|
2
|
Luo Z, Chen S, Zhou J, Wang C, Li K, Liu J, Tang Y, Wang L. Application of aptamers in regenerative medicine. Front Bioeng Biotechnol 2022; 10:976960. [PMID: 36105606 PMCID: PMC9465253 DOI: 10.3389/fbioe.2022.976960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Regenerative medicine is a discipline that studies how to use biological and engineering principles and operation methods to repair and regenerate damaged tissues and organs. Until now, regenerative medicine has focused mainly on the in-depth study of the pathological mechanism of diseases, the further development and application of new drugs, and tissue engineering technology strategies. The emergence of aptamers has supplemented the development methods and types of new drugs and enriched the application elements of tissue engineering technology, injecting new vitality into regenerative medicine. The role and application status of aptamers screened in recent years in various tissue regeneration and repair are reviewed, and the prospects and challenges of aptamer technology are discussed, providing a basis for the design and application of aptamers in long-term transformation.
Collapse
Affiliation(s)
- Zhaohui Luo
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shimin Chen
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jing Zhou
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Kai Li, ; Jia Liu, ; Yujin Tang,
| | - Jia Liu
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- *Correspondence: Kai Li, ; Jia Liu, ; Yujin Tang,
| | - Yujin Tang
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- *Correspondence: Kai Li, ; Jia Liu, ; Yujin Tang,
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Wang Y, Yuan H. Research progress of endogenous neural stem cells in spinal cord injury. IBRAIN 2022; 8:199-209. [PMID: 37786888 PMCID: PMC10529172 DOI: 10.1002/ibra.12048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 10/04/2023]
Abstract
Spinal cord injury (SCI) is a severe disabling disease, which mainly manifests as impairments of sensory and motor functions, sexual function, bladder and intestinal functions, respiratory and cardiac functions below the injury plane. In addition, the condition has a profound effect on the mental health of patients, which often results in severe sequelae. Some patients may be paraplegic for life or even die, which places a huge burden on the family and society. There is still no effective treatment for SCI. Studies have confirmed that endogenous neural stem cells (ENSCs), as multipotent neural stem cells, which are located in the ependymal region of the central canal of the adult mammalian spinal cord, are activated after SCI and then differentiate into various nerve cells to promote endogenous repair and regeneration. However, the central canal of the spinal cord is often occluded to varying degrees in adults, and residual ependymal cells cannot be activated and do not proliferate after SCI. Besides, the destruction of the microenvironment after SCI is also an important factor that affects the proliferation and differentiation of ENSCs and spinal cord repair. Therefore, this review describes the role of ENSCs in SCI, in terms of the origin, transformation, treatment, and influencing factors, to provide new ideas for clinical treatment of SCI.
Collapse
Affiliation(s)
- Ya‐Ting Wang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Hao Yuan
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
4
|
Chen T, Zhang S, Jin H, Fu X, Shang L, Lu Y, Sun Y, Hisham Yahaya B, Liu Y, Lin J. Nonfreezing Low Temperature Maintains the Viability of Menstrual Blood-Derived Endometrial Stem Cells Under Oxygen-Glucose Deprivation Through the Sustained Release of Autophagy-Produced Energy. Cell Transplant 2022; 31:9636897221086971. [PMID: 35416078 PMCID: PMC9014719 DOI: 10.1177/09636897221086971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Between the completion of the mesenchymal stem cell (MSCs) preparation and the transplantation into the patient, there is a time interval during which the quality control and transport of MSC products occur, which usually involves suspending the cells in normal saline in an oxygen-glucose deprivation (OGD) microenvironments. Thus, how to effectively maintain MSC viability during the abovementioned time interval is bound to play a significant role in the therapeutic effect of MSC-based therapies. Recently, menstrual blood-derived endometrial stem cells (MenSCs) have attracted extensive attention in regenerative medicine due to their superior biological characteristics, including noninvasive protocols for their collection, abundant source material, stable donation, and autotransplantation. Therefore, this study aimed to mainly determine the effect of storage temperature on the maintenance of MenSC viabilities in an OGD microenvironment, and to preliminarily explore its potential mechanism. Simultaneously, the effects of solvents commonly used in the clinic on MenSC viability were also examined to support the clinical application of MenSCs. Consequently, our results demonstrated that in the OGD microenvironment, a nonfreezing low temperature (4°C) was suitable and cost-effective for MenSC storage, and the maintenance of MenSC viability stored at 4°C was partly contributed by the sustained releases of autophagy-produced energy. Furthermore, the addition of human serum albumin effectively inhibited the cell sedimentations in the MenSC suspension. These results provide support and practical experience for the extensive application of MenSCs in the clinic.
Collapse
Affiliation(s)
- Tongtong Chen
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongzhang Jin
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Fu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lingrui Shang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang Malaysia
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
The Role of MSCs and Cell Fusion in Tissue Regeneration. Int J Mol Sci 2021; 22:ijms222010980. [PMID: 34681639 PMCID: PMC8535885 DOI: 10.3390/ijms222010980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is concerned with the investigation of therapeutic agents that can be used to promote the process of regeneration after injury or in different diseases. Mesenchymal stem/stromal cells (MSCs) and their secretome—including extracellular vesicles (EVs) are of great interest, due to their role in tissue regeneration, immunomodulatory capacity and low immunogenicity. So far, clinical studies are not very conclusive as they show conflicting efficacies regarding the use of MSCs. An additional process possibly involved in regeneration might be cell fusion. This process occurs in both a physiological and a pathophysiological context and can be affected by immune response due to inflammation. In this review the role of MSCs and cell fusion in tissue regeneration is discussed.
Collapse
|
6
|
Li W, Jiao X, Song J, Sui B, Guo Z, Zhao Y, Li J, Shi S, Huang Q. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function. Stem Cells Transl Med 2021; 10:956-967. [PMID: 33660433 PMCID: PMC8235136 DOI: 10.1002/sctm.20-0303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/02/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great potential in treating patients with diabetes, but the therapeutic effects are not always achieved. Particularly, the clinical factors regulating MSC therapy in this setting are largely unknown. In this study, 24 patients with type 2 diabetes mellitus (T2DM) treated with insulin were selected to receive three intravenous infusions of stem cells from human exfoliated deciduous teeth (SHED) over the course of 6 weeks and were followed up for 12 months. We observed a significant reduction of glycosylated serum albumin level (P < .05) and glycosylated hemoglobin level (P < .05) after SHED transplantation. The total effective rate was 86.36% and 68.18%, respectively, at the end of treatment and follow‐up periods. Three patients ceased insulin injections after SHED transplantation. A steamed bread meal test showed that the serum levels of postprandial C‐peptide at 2 hours were significantly higher than those at the baseline (P < .05). Further analysis showed that patients with a high level of blood cholesterol and a low baseline level of C‐peptide had poor response to SHED transplantation. Some patients experienced a transient fever (11.11%), fatigue (4.17%), or rash (1.39%) after SHED transplantation, which were easily resolved. In summary, SHED infusion is a safe and effective therapy to improve glucose metabolism and islet function in patients with T2DM. Blood lipid levels and baseline islet function may serve as key factors contributing to the therapeutic outcome of MSC transplantation in patients with T2DM.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xuan Jiao
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jingyun Song
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Bingdong Sui
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Research and Development Center for Tissue Engineering, School of Stomatology, Air Force Medical University, People's Republic of China
| | - Zhili Guo
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingji Zhao
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun Li
- Easter Greenland Hospital, People's Republic of China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Kirillova A, Bushev S, Abubakirov A, Sukikh G. Bioethical and Legal Issues in 3D Bioprinting. Int J Bioprint 2020; 6:272. [PMID: 33088986 PMCID: PMC7557521 DOI: 10.18063/ijb.v6i3.272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Bioethical and legal issues of three-dimensional (3D) bioprinting as the emerging field of biotechnology have not yet been widely discussed among bioethicists around the world, including Russia. The scope of 3D bioprinting includes not only the issues of the advanced technologies of human tissues and organs printing but also raises a whole layer of interdisciplinary problems of modern science, technology, bioethics, and philosophy. This article addresses the ethical and legal issues of bioprinting of artificial human organs.
Collapse
Affiliation(s)
- Anastasia Kirillova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117513, Russia
| | - Stanislav Bushev
- Department of Philosophy, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aydar Abubakirov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117513, Russia
| | - Gennady Sukikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117513, Russia
| |
Collapse
|