1
|
Zhao P, Song S, He Z, Dai G, Liu D, Shen J, Asakawa T, Zheng M, Lu H. Development of a novel cholesterol tag-based system for trans-membrane transport of protein drugs. Biosci Trends 2024; 17:503-507. [PMID: 38072446 DOI: 10.5582/bst.2023.01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The main technological difficulties of developing an intracellular (transmembrane) transport system for protein drugs lie in two points: i) overcoming the barriers in the cellular membrane, and ii) loading enough protein drugs, and particularly high-dose proteins, into particles. To address these two technological problems, we recently developed a novel cholesterol tag (C-Tag)-based transmembrane transport system. This pilot study found that the C-Tag dramatically improved the cellular uptake of Fab (902-fold, vs. Fab alone) into living cells, indicating that it successfully achieved transmembrane transport. Moreover, C-Tag-mediated membrane transport was verified using micron-scale large unilamellar vesicles (LUVs, approximately 1.5 μm)-based particles. The C-Tagged Fab was able to permeate the liposomal bilayer and it greatly enhanced (a 10.1-fold increase vs. Fab alone) internalization of proteins into the LUV-based particles, indicating that the C-Tag loaded enough proteins into particles for use of high-dose proteins. Accordingly, we established a novel C-Tag-based transport system that has overcome the known technological difficulties of protein transmembrane delivery, and this might be a useful technology for drug development in the future.
Collapse
Affiliation(s)
- Pengfei Zhao
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Shuo Song
- Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
| | - Zhuojun He
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Guiqin Dai
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Deliang Liu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Jiayin Shen
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Mingbin Zheng
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Wu J, Lu R, Wang J, Su J, Gu C, Xie Q, Zhu H, Xiao J, Liu W. Establishment of reverse genetics for genotype VII Newcastle disease virus and altering the cell tropism by inserting TMPRSS2 into the viral genome. Virus Genes 2023:10.1007/s11262-023-01999-9. [PMID: 37103648 PMCID: PMC10133899 DOI: 10.1007/s11262-023-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Newcastle disease (ND) is the most important infectious disease in poultry, which is caused by avian orthoavulavirus type 1 (AOAV-1), previously known as Newcastle disease virus (NDV). In this study, an NDV strain SD19 (GenBank accession number OP797800) was isolated, and phylogenetic analysis suggested the virus belongs to the class II genotype VII. After generating wild-type rescued SD19 (rSD19), the attenuating strain (raSD19) was generated by mutating the F protein cleavage site. To explore the potential role of the transmembrane protease, serine S1 member 2 (TMPRSS2), the TMPRSS2 gene was inserted into the region between the P and M genes of raSD19 to generate raSD19-TMPRSS2. Besides, the coding sequence of the enhanced green fluorescent protein (EGFP) gene was inserted in the same region as a control (rSD19-EGFP and raSD19-EGFP). The Western blot, indirect immunofluorescence assay (IFA), and real-time quantitative PCR were employed to determine the replication activity of these constructs. The results reveal that all the rescued viruses can replicate in chicken embryo fibroblast (DF-1) cells; however, the proliferation of raSD19 and raSD19-EGFP needs additional trypsin. We next evaluated the virulence of these constructs, and our results reveal that the SD19, rSD19, and rSD19-EGFP are velogenic; the raSD19 and raSD19-EGFP are lentogenic; and the raSD19-TMPRSS2 are mesogenic. Moreover, due to the enzymatic hydrolysis of serine protease, the raSD19-TMPRSS2 can support itself to proliferate in the DF-1 cells without adding exogenous trypsin. These results may provide a new method for the NDV cell culture and contribute to ND's vaccine development.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Rongguang Lu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, Guangdong, People's Republic of China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jun Su
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Chenchen Gu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qianqian Xie
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hui Zhu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jun Xiao
- Department of Geriatrics, The Eight Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
3
|
Lyu F, Zhao YH, Lu Y, Zuo XX, Deng BH, Zeng MQ, Wang JN, Olaniran A, Hou J, Khoza T. Vacuum Foam Drying Method Improved the Thermal Stability and Long-Term Shelf Life of a Live Attenuated Newcastle Disease Virus Vaccine. AAPS PharmSciTech 2022; 23:291. [DOI: 10.1208/s12249-022-02440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
|