1
|
Serrenho I, Ferreira SA, Baltazar G. Preconditioning of MSCs for Acute Neurological Conditions: From Cellular to Functional Impact-A Systematic Review. Cells 2024; 13:845. [PMID: 38786067 PMCID: PMC11119364 DOI: 10.3390/cells13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
This systematic review aims to gather evidence on the mechanisms triggered by diverse preconditioning strategies for mesenchymal stem cells (MSCs) and their impact on their potential to treat ischemic and traumatic injuries affecting the nervous system. The 52 studies included in this review report nine different types of preconditioning, namely, manipulation of oxygen pressure, exposure to chemical substances, lesion mediators or inflammatory factors, usage of ultrasound, magnetic fields or biomechanical forces, and culture in scaffolds or 3D cultures. All these preconditioning strategies were reported to interfere with cellular pathways that influence MSCs' survival and migration, alter MSCs' phenotype, and modulate the secretome and proteome of these cells, among others. The effects on MSCs' phenotype and characteristics influenced MSCs' performance in models of injury, namely by increasing the homing and integration of the cells in the lesioned area and inducing the secretion of growth factors and cytokines. The administration of preconditioned MSCs promoted tissue regeneration, reduced neuroinflammation, and increased angiogenesis and myelinization in rodent models of stroke, traumatic brain injury, and spinal cord injury. These effects were also translated into improved cognitive and motor functions, suggesting an increased therapeutic potential of MSCs after preconditioning. Importantly, none of the studies reported adverse effects or less therapeutic potential with these strategies. Overall, we can conclude that all the preconditioning strategies included in this review can stimulate pathways that relate to the therapeutic effects of MSCs. Thus, it would be interesting to explore whether combining different preconditioning strategies can further boost the reparative effects of MSCs, solving some limitations of MSCs' therapy, namely donor-associated variability.
Collapse
Affiliation(s)
- Inês Serrenho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (I.S.); (S.A.F.)
| | - Susana Alves Ferreira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (I.S.); (S.A.F.)
| | - Graça Baltazar
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Shokeir AA, Awadalla A, Hamam ET, Hussein AM, Mahdi MR, Abosteta AN, Shahin M, Barakat N, El-Adl M, El-Sherbiny M, Eldesoqui M, AlMadani M, Ali SK, El-Sherbini ES, Khirallah SM. Human Wharton's jelly-derived mesenchymal stromal stem cells preconditioned with valproic acid promote cell migration and reduce renal inflammation in ischemia/reperfusion injury by activating the AKT/P13K and SDF1/CXCR4 pathways. Arch Biochem Biophys 2024; 755:109985. [PMID: 38579957 DOI: 10.1016/j.abb.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats. METHODS 150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies. RESULTS WJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-β1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone. CONCLUSION WJ-MSCs isolated from the umbilical cord and pretreated with VPA defended the kidney against IRI by more easily homing to the site of injury.
Collapse
Affiliation(s)
- Ahmed A Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Eman T Hamam
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt; Nanomedicine Research Unit, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Alyaa Naeem Abosteta
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mirna Shahin
- Mansoura Manchester Medical Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Departement of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Moneer AlMadani
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Sahar K Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - El-Said El-Sherbini
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Salma M Khirallah
- Chemistry Department (Biochemistry Division), Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| |
Collapse
|
3
|
Yang Q, Zhang H, Jin Z, Zhang B, Wang Y. Effects of Valproic Acid Therapy on Rats with Spinal Cord Injury: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 182:12-28. [PMID: 37923014 DOI: 10.1016/j.wneu.2023.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically evaluate the efficacy of valproic acid (VPA) in rats with spinal cord injury (SCI) to reduce the risk of clinical conversion and provide a valuable reference for future animal and clinical studies. METHODS We searched scientific databases, including PubMed, Ovid-Embase, Web of Science, and Scopus databases. The relevant literature was searched from the establishment date of the database to June 28, 2023. The search results were screened, data were extracted, and the quality of the literature was evaluated independently by 2 reviewers. RESULTS Among 656 nonduplicated references, 14 articles were included for meta-analysis. The summary results showed that the overall Basso, Beattie and Bresnahan scores of the VPA intervention group were significantly higher than those in the control group at 1-6 weeks after VPA intervention. Subgroup analysis showed that the injury model, administration dose, rat strain, country of study, or follow-up duration had no significant effect on the efficacy of VPA on rats with SCI. In addition, mesh analysis showed that high doses of the VPA group had a better effect on SCI rats, compared with the low dose group and the medium dose group. CONCLUSIONS To date, this is the first systematic evaluation of the potential effects of VPA on motor recovery in rats with SCI. We concluded that VPA can promote motor recovery in rats with SCI, and higher doses of VPA seem to be more effective in rats with SCI. However, the limited quality and sample of included studies reduced the application of this meta-analysis. In the future, more high-quality, direct comparative studies are needed to explore this issue in depth.
Collapse
Affiliation(s)
- Qinglin Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zhuanmei Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongping Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Farid MF, S Abouelela Y, Rizk H. Stem cell treatment trials of spinal cord injuries in animals. Auton Neurosci 2022; 238:102932. [PMID: 35016045 DOI: 10.1016/j.autneu.2021.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious neurological spinal cord damage that resulted in the loss of temporary or permanent function. However, there are even now no effective therapies for it. So, a new medical promising therapeutic hotspot over the previous decades appeared which was (Stem cell (SC) cure of SCI). Otherwise, animal models are considered in preclinical research as a model for humans to trial a potential new treatment. METHODOLOGY Following articles were saved from different databases (PubMed, Google scholar, Egyptian knowledge bank, Elsevier, Medline, Embase, ProQuest, BMC) on the last two decades, and data were obtained then analyzed. RESULTS This review discusses the type and grading of SCI. As well as different types of stem cells therapy for SCI, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The review focuses on the transplantation pathways, clinical evaluation, and clinical signs of different types of SC on different animal models which are summarized in tables to give an easy to reach. CONCLUSION Pharmacological and physiotherapy have limited regenerative power in comparison with stem cells medication in the treatment of SCI. Among several sources of cell therapies, mesenchymal stromal/stem cell (MSC) one is being progressively developed as a trusted important energetic way to repair and regenerate. Finally, a wide-ranged animal models have been condensed that helped in human clinical trial therapies.
Collapse
Affiliation(s)
- Mariam F Farid
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yara S Abouelela
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hamdy Rizk
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
5
|
Johnson LDV, Pickard MR, Johnson WEB. The Comparative Effects of Mesenchymal Stem Cell Transplantation Therapy for Spinal Cord Injury in Humans and Animal Models: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10030230. [PMID: 33809684 PMCID: PMC8001771 DOI: 10.3390/biology10030230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Animal models have been used in preclinical research to examine potential new treatments for spinal cord injury (SCI), including mesenchymal stem cell (MSC) transplantation. MSC transplants have been studied in early human trials. Whether the animal models represent the human studies is unclear. This systematic review and meta-analysis has examined the effects of MSC transplants in human and animal studies. Following searches of PubMed, Clinical Trials and the Cochrane Library, published papers were screened, and data were extracted and analysed. MSC transplantation was associated with significantly improved motor and sensory function in humans, and significantly increased locomotor function in animals. However, there are discrepancies between the studies of human participants and animal models, including timing of MSC transplant post-injury and source of MSCs. Additionally, difficulty in the comparison of functional outcome measures across species limits the predictive nature of the animal research. These findings have been summarised, and recommendations for further research are discussed to better enable the translation of animal models to MSC-based human clinical therapy.
Collapse
Affiliation(s)
- Louis D. V. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| | - Mark R. Pickard
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
| | - William E. B. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| |
Collapse
|
6
|
Heirani-Tabasi A, Mirahmadi M, Mishan MA, Naderi-Meshkin H, Toosi S, Matin MM, Bidkhori HR, Bahrami AR. Comparison the effects of hypoxia-mimicking agents on migration-related signaling pathways in mesenchymal stem cells. Cell Tissue Bank 2020; 21:643-653. [PMID: 32815062 DOI: 10.1007/s10561-020-09851-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Adipose-derived mesenchymal stem cells (Ad-MSCs) have been designated as the promising agents for clinical applications for easy accessibility, multi-linage differentiation and immunomodulation capacity. Despite this, optimal cell delivery conditions have remained as a clinical challenge and improvement of stem cell homing to the target organs is being considered as a major strategy in cell therapy systemic injection. It has been shown that homing of mesenchymal stem cells are increased when treated with physical or chemical hypoxia-mimicking factors, however, efficiency of different agents remained to be determined. In this study, hypoxia-mimicking agents, including valproic acid (VPA), cobalt chloride (CoCl2) and deferoxamine (DFX) were examined to determine whether they are able to activate signaling molecules involved in migration of Ad-MSCs in vitro. We report that Ad-MSCs treated by DFX resulted in a significantly enhanced mRNA expression of MAPK4 (associated with MAPK signaling pathway), INPP4B (associated with Inositol polyphosphate pathway), VEGF-A and VEGF-C (associated with cytokine-cytokine receptor pathways), IL-8 and its receptor, CXCR2 (associated with IL-8 signaling pathway). While the cells treated with VPA did not show such effects and CoCl2 only upregulated VEGF-A and VEGF-C gene expression. Furthermore, results of wound-healing assays showed migration capacity of Ad-MSCs treated with DFX significantly increased 8 and 24 h of the treatment. This study provides credible evidence around DFX, which might be an effective drug for pharmacological preconditioning of Ad-MSCs to boost their homing capacity and regeneration of damaged tissues though, activation of the migration-related signaling pathways.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Shirin Toosi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Maryam M Matin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran. .,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran. .,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Song H, Suo S, Ning C, Zhang Y, Mu W, Chen S. Bone Marrow Mesenchymal Stem Cells Transplantation on Acute Spinal Cord Injury. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hua Song
- School of Medicine, Shandong University
- Department of Orthopaedics, Tengzhou Central People’s Hospital
| | - Shiqi Suo
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering
| | - Chao Ning
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering
| | - Yang Zhang
- Department of Gynecology, Affiliated Hospital of Hebei University of Engineering
| | - Weidong Mu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University
| | - Song Chen
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering
| |
Collapse
|
8
|
Ha XQ, Yang B, Hou HJ, Cai XL, Xiong WY, Wei XP. Protective effect of rhodioloside and bone marrow mesenchymal stem cells infected with HIF-1-expressing adenovirus on acute spinal cord injury. Neural Regen Res 2020; 15:690-696. [PMID: 31638093 PMCID: PMC6975151 DOI: 10.4103/1673-5374.266920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodioloside has been shown to protect cells from hypoxia injury, and bone marrow mesenchymal stem cells have a good effect on tissue repair. To study the effects of rhodioloside and bone marrow mesenchymal stem cells on spinal cord injury, a rat model of spinal cord injury was established using the Infinite Horizons method. After establishing the model, the rats were randomly divided into five groups. Rats in the control group were intragastrically injected with phosphate buffered saline (PBS) (5 μL). PBS was injected at 6 equidistant points around 5 mm from the injury site and at a depth of 5 mm. Rats in the rhodioloside group were intragastrically injected with rhodioloside (5 g/kg) and intramuscularly injected with PBS. Rats in the mesenchymal stem cell (MSC) group were intramuscularly injected with PBS and intramuscularly with MSCs (8 × 106/mL in a 50-μL cell suspension). Rats in the Ad-HIF-MSC group were intragastrically injected with PBS and intramuscularly injected with HIF-1 adenovirus-infected MSCs. Rats in the rhodioloside + Ad-HIF-MSC group were intramuscularly injected with MSCs infected with the HIF-1 adenovirus and intragastrically injected with rhodioloside. One week after treatment, exercise recovery was evaluated with a modified combined behavioral score scale. Hematoxylin-eosin staining and Pischingert’s methylene blue staining were used to detect any histological or pathological changes in spinal cord tissue. Levels of adenovirus IX and Sry mRNA were detected by real-time quantitative polymerase chain reaction and used to determine the number of adenovirus and mesenchymal stem cells that were transfected into the spinal cord. Immunohistochemical staining was applied to detect HIF-1 protein levels in the spinal cord. The results showed that: (1) compared with the other groups, the rhodioloside + Ad-HIF-MSC group exhibited the highest combined behavioral score (P < 0.05), the most recovered tissue, and the greatest number of neurons, as indicated by Pischingert’s methylene blue staining. (2) Compared with the PBS group, HIF-1 protein expression was greater in the rhodioloside group (P < 0.05). (3) Compared with the Ad-HIF-MSC group, Sry mRNA levels were higher in the rhodioloside + Ad-HIF-MSC group (P < 0.05). These results confirm that rhodioloside combined with bone marrow mesenchymal stem cells can promote the recovery of spinal cord injury and activate the HIF-1 pathway to promote the survival of bone marrow mesenchymal stem cells and repair damaged neurons within spinal cord tissue. This experiment was approved by the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine, China (approval No. 2015KYLL029) in June 2015.
Collapse
Affiliation(s)
- Xiao-Qin Ha
- Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Bo Yang
- Department of Clinical Laboratory, Lanzhou General Hospital of Lanzhou Military Area Command; School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Huai-Jing Hou
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xiao-Ling Cai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu Province, China
| | - Wan-Yuan Xiong
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xu-Pan Wei
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| |
Collapse
|
9
|
Yang P, Chen A, Qin Y, Yin J, Cai X, Fan YJ, Li L, Huang HY. Buyang huanwu decoction combined with BMSCs transplantation promotes recovery after spinal cord injury by rescuing axotomized red nucleus neurons. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:123-131. [PMID: 30266421 DOI: 10.1016/j.jep.2018.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang huanwu decoction (BYHWD) is a classic recipe in traditional Chinese medicine (TCM) to supplement Qi and activate blood. It has been used to recover the neural function after the injury of central nervous system for hundreds of years in China. AIM OF THE STUDY This study investigated whether Buyang huanwu decoction (BYHWD) combined with bone marrow mesenchymal stem cells (BMSCs) transplantation had synergistic effect on neuroprotection of red nucleus neurons after spinal cord injury (SCI). MATERIALS AND METHODS Rubrospinal tract (RST) transection model was established and BMSCs were collected. The forelimb locomotor function was recorded using inclined plate test and spontaneous vertical exploration. cAMP level in red nucleus was detected with Enzyme-linked immunosorbent assay (ELISA). Morphology and number of red nucleus neurons was observed using Nissl's staining. Expression of cAMP-response element binding protein (CREB), ras homolog gene family member A (RhoA) and nerve growth factor (NGF) in red nucleus was detected using immunohistochemistry, qRT-PCR and Western-blotting. RESULTS The combination of BYHWD and BMSCs transplantation could improve the forelimb locomotor function significantly and give the red nucleus somas a better protection. Meanwhile, cAMP level, CREB and NGF increased, while RhoA decreased remarkably in the BYHWD+BMSCs group. CONCLUSIONS BYHWD combined with BMSCs transplantation had synergistic effect on neuroprotection of red nucleus neurons after SCI; the mechanism may be related to up-regulating cAMP level, activating the cAMP/CREB/RhoA signaling pathway, and promoting expression of NGF.
Collapse
Affiliation(s)
- Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, NO.427, Middle Furong Road, Changsha, Hunan Province 410007, China
| | - An Chen
- Department of Anatomy, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China
| | - You Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, NO. 8, Yuehua Road, Changsha, Hunan Province 410013, China
| | - Jian Yin
- Department of Anatomy, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China
| | - Xiong Cai
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China
| | - Yu-Jie Fan
- Department of Psychiatry, Hunan Brain Hospital, NO.427, Middle Furong Road, Changsha, Hunan Province 410007, China
| | - Liang Li
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China.
| | - Hui-Yong Huang
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, NO.300, Xue shi Road, Changsha, Hunan Province 410208, China.
| |
Collapse
|
10
|
Li D, Zhang P, Yao X, Li H, Shen H, Li X, Wu J, Lu X. Exosomes Derived From miR-133b-Modified Mesenchymal Stem Cells Promote Recovery After Spinal Cord Injury. Front Neurosci 2018; 12:845. [PMID: 30524227 PMCID: PMC6262643 DOI: 10.3389/fnins.2018.00845] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) has been found in injured spinal cords after spinal cord injury (SCI). Previous studies have shown that miR-133b plays an important role in the differentiation of neurons and the outgrowth of neurites. Recently, exosomes have been used as novel biological vehicles to transfer miRNAs locally or systemically, but little is known about the effect of the delivery of exosome-mediated miRNAs on the treatment of SCI. In the present study, we observed that mesenchymal stem cells, the most common cell types known to produce exosomes, could package miR-133b into secreted exosomes. After SCI, tail vein injection of miR-133b exosomes into rats significantly improved the recovery of hindlimb function when compared to control groups. Additionally, treatment with miR-133b exosomes reduced the volume of the lesion, preserved neuronal cells, and promoted the regeneration of axons after SCI. We next observed that the expression of RhoA, a direct target of miR-133b, was decreased in the miR-133b exosome group. Moreover, we showed that miR-133b exosomes activated ERK1/2, STAT3, and CREB, which are signaling pathway proteins involved in the survival of neurons and the regeneration of axons. In summary, these findings demonstrated that systemically injecting miR-133b exosomes preserved neurons, promoted the regeneration of axons, and improved the recovery of hindlimb locomotor function following SCI, suggesting that the transfer of exosome-mediated miRNAs represents a novel therapeutic approach for the treatment of SCI.
Collapse
Affiliation(s)
- Dong Li
- Department of Neurosurgery, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Peng Zhang
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiyang Yao
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Wu
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaocheng Lu
- Department of Neurosurgery, Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Lim J, Lee S, Ju H, Kim Y, Heo J, Lee HY, Choi KC, Son J, Oh YM, Kim IG, Shin DM. Valproic acid enforces the priming effect of sphingosine-1 phosphate on human mesenchymal stem cells. Int J Mol Med 2017; 40:739-747. [PMID: 28677769 PMCID: PMC5547989 DOI: 10.3892/ijmm.2017.3053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
Abstract
Engraftment and homing of mesenchymal stem cells (MSCs) are modulated by priming factors including the bioactive lipid sphingosine-1-phosphate (S1P), by stimulating CXCR4 receptor signaling cascades. However, limited in vivo efficacy and the remaining priming molecules prior to administration of MSCs can provoke concerns regarding the efficiency and safety of MSC priming. Here, we showed that valproic acid (VPA), a histone deacetylase inhibitor, enforced the priming effect of S1P at a low dosage for human umbilical cord-derived MSCs (UC-MSCs). A DNA-methylation inhibitor, 5-azacytidine (5-Aza), and VPA increased the expression of CXCR4 in UC-MSCs. In particular, UC-MSCs primed with a suboptimal dose (50 nM) of S1P in combination with 0.5 mM VPA (VPA+S1P priming), but not 1 µM 5-Aza, significantly improved the migration activity in response to stromal cell-derived factor 1 (SDF-1) concomitant with the activation of both MAPKp42/44 and AKT signaling cascades. Both epigenetic regulatory compounds had little influence on cell surface marker phenotypes and the multi-potency of UC-MSCs. In contrast, VPA+S1P priming of UC-MSCs potentiated the proliferation, colony forming unit-fibroblast, and anti-inflammatory activities, which were severely inhibited in the case of 5-Aza treatment. Accordingly, the VPA+S1P-primed UC-MSCs exhibited upregulation of a subset of genes related to stem cell migration and anti-inflammation response. Thus, the present study demonstrated that VPA enables MSC priming with S1P at a low dosage by enhancing their migration and other therapeutic beneficial activities. This priming strategy for MSCs may provide a more efficient and safe application of MSCs for treating a variety of intractable disorders.
Collapse
Affiliation(s)
- Jisun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seungun Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyein Ju
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yonghwan Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hye-Yeon Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jaekyoung Son
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
12
|
The Role of Stem Cells in the Treatment of Cerebral Palsy: a Review. Mol Neurobiol 2016; 54:4963-4972. [PMID: 27520277 DOI: 10.1007/s12035-016-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Cerebral palsy (CP) is a neuromuscular disease due to injury in the infant's brain. The CP disorder causes many neurologic dysfunctions in the patient. Various treatment methods have been used for the management of CP disorder. However, there has been no absolute cure for this condition. Furthermore, some of the procedures which are currently used for relief of symptoms in CP cause discomfort or side effects in the patient. Recently, stem cell therapy has attracted a huge interest as a new therapeutic method for treatment of CP. Several investigations in animal and human with CP have demonstrated positive potential of stem cell transplantation for the treatment of CP disorder. The ultimate goal of this therapeutic method is to harness the regenerative capacity of the stem cells causing a formation of new tissues to replace the damaged tissue. During the recent years, there have been many investigations on stem cell therapy. However, there are still many unclear issues regarding this method and high effort is needed to create a technology as a perfect treatment. This review will discuss the scientific background of stem cell therapy for cerebral palsy including evidences from current clinical trials.
Collapse
|
13
|
Tang L, Lu X, Zhu R, Qian T, Tao Y, Li K, Zheng J, Zhao P, Li S, Wang X, Li L. Adipose-Derived Stem Cells Expressing the Neurogenin-2 Promote Functional Recovery After Spinal Cord Injury in Rat. Cell Mol Neurobiol 2016; 36:657-67. [PMID: 26283493 DOI: 10.1007/s10571-015-0246-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/25/2015] [Indexed: 12/12/2022]
Abstract
Neurogenin2 (Ngn2) is a proneural gene that directs neuronal differentiation of progenitor cells during development. This study aimed to investigate whether the use of adipose-derived stem cells (ADSCs) over-expressing the Ngn2 transgene (Ngn2-ADSCs) could display the characteristics of neurogenic cells and improve functional recovery in an experimental rat model of SCI. ADSCs from rats were cultured and purified in vitro, followed by genetically modified with the Ngn2 gene. Forty-eight adult female Sprague-Dawley rats were randomly assigned to three groups: the control, ADSCs, and Ngn2-ADSCs groups. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan locomotor rating scale for 8 weeks. Moreover, hematoxylineosin staining and immunohistochemistry were also performed. After neural induction, positive expression rate of NeuN in Ngn2-ADSCs group was upon 90 %. Following transplantation, a great number of ADSCs was found around the center of the injury spinal cord at 1 and 4 weeks, which improved retention of tissue at the lesion site. Ngn2-ADSCs differentiated into neurons, indicated by the expression of neuronal markers, NeuN and Tuj1. Additionally, transplantation of Ngn2-ADSCs upregulated the trophic factors (brain-derived neurotrophic factor and vascular endothelial growth factor), and inhibited the glial scar formation, which was indicated by immunohistochemistry with glial fibrillary acidic protein. Finally, Ngn2-ADSCs-treated animals showed the highest functional recovery among the three groups. These findings suggest that transplantation of Ngn2-overexpressed ADSCs promote the functional recovery from SCI, and improve the local microenvironment of injured cord in a more efficient way than that with ADSCs alone.
Collapse
Affiliation(s)
- Linjun Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of Neurosurgery, Tongling Municipal Hospital, Tongling, 244000, Anhui, China
| | - Xiaocheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ronglan Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Tengda Qian
- Department of Neurosurgery, Jiangsu University Affiliated Jintan Hospital, Jintan, 213200, Jiangsu, China
| | - Yi Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Kai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jinyu Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Penglai Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Shuai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
14
|
Li XC, Zhong CF, Deng GB, Liang RW, Huang CM. Efficacy and safety of bone marrow-derived cell transplantation for spinal cord injury: a systematic review and meta-analysis of clinical trials. Clin Transplant 2015; 29:786-95. [PMID: 26115044 DOI: 10.1111/ctr.12580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao Chuan Li
- Department of Orthopedics Surgery; Gaozhou People's Hospital; Guangdong China
| | - Cheng Fan Zhong
- Department of Orthopedics Surgery; Gaozhou People's Hospital; Guangdong China
| | - Gui Bin Deng
- Department of Orthopedics Surgery; Gaozhou People's Hospital; Guangdong China
| | - Rong Wei Liang
- Department of Orthopedics Surgery; Gaozhou People's Hospital; Guangdong China
| | - Chun Ming Huang
- Department of Orthopedics Surgery; Gaozhou People's Hospital; Guangdong China
| |
Collapse
|
15
|
Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, Wang F, Xiao J. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One 2015; 10:e0115991. [PMID: 25693182 PMCID: PMC4333820 DOI: 10.1371/journal.pone.0115991] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 01/30/2023] Open
Abstract
Telocytes (TCs) are a peculiar type of interstitial cells with very long prolongations termed telopodes. TCs have previously been identified in different anatomic structures of the heart, and have also been isolated and cultured from heart tissues in vitro. TCs and fibroblasts, both located in the interstitial spaces of the heart, have different morphologies and functionality. However, other than microscopic observation, a reliable means to make differential diagnosis of cardiac TCs from fibroblasts remains unclear. In the present study, we isolated and cultured cardiac TCs and fibroblasts from heart tissues, and observed their different morphological features and immunophenotypes in primary culture. Morphologically, TCs had extremely long and thin telopodes with moniliform aspect, stretched away from cell bodies, while cell processes of fibroblasts were short, thick and cone shaped. Furthermore, cardiac TCs were positive for CD34/c-kit, CD34/vimentin, and CD34/PDGFR-β, while fibroblasts were only vimentin and PDGFR-β positive. In addition, TCs were also different from pericytes as TCs were CD34 positive and α-SMA weak positive while pericytes were CD34 negative but α-SMA positive. Besides that, we also showed cardiac TCs were homogenously positive for mesenchymal marker CD29 but negative for hematopoietic marker CD45, indicating that TCs could be a source of cardiac mesenchymal cells. The differences in morphological features and immunophenotypes between TCs and fibroblasts will provide more compelling evidence to differentiate cardiac TCs from fibroblasts.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiulian Zhou
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Siyi Fu
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Dongchao Lv
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Ping Chen
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Chen
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|