1
|
Ni P, Duan D, Xiong S, Zhong M, Huang C, Shan J, Yuan T, Liang J, Fan Y, Zhang X. Bioadhesive chitosan hydrogel with ROS scavenging promotes angiogenesis and mucosal repair for the treatment of gastric ulcer. CHEMICAL ENGINEERING JOURNAL 2024; 497:154519. [DOI: 10.1016/j.cej.2024.154519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Surman M, Wilczak M, Jankowska U, Skupień-Rabian B, Przybyło M. Shotgun proteomics of thyroid carcinoma exosomes - Insight into the role of exosomal proteins in carcinogenesis and thyroid homeostasis. Biochim Biophys Acta Gen Subj 2024; 1868:130672. [PMID: 39025337 DOI: 10.1016/j.bbagen.2024.130672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Transport of molecules via exosomes is one of the factors involved in thyroid cancer development, and transported molecules may serve as cancer biomarkers. The aim of the study was to characterize protein content of thyroid-derived exosomes and their functional effect exerted on recipient cells. METHODS LC-MS/MS proteomics of exosomes released by FTC and 8305C thyroid carcinoma cell lines, and Nthy-ori 3-1 normal thyroid follicular cells was performed, followed by bioinformatic analysis and functional tests (wound healing and Alamar Blue assays). RESULTS Exosomes from Nthy-ori 3-1 cells had the highest number of 1504 proteins, while in exosomes from thyroid carcinoma FTC and 8305C cells 730 and 1304 proteins were identified, respectively. For proteins uniquely found in FTC- and 8305C-derived exosomes, enriched cancer-related gene ontology categories included cell adhesion, positive regulation of cell migration, N-glycosylation, drug resistance, and response to NK/T cell cytotoxicity. Furthermore, through label-free quantification (that identified differentially expressed proteins) and comparison with The Human Protein Atlas database several potential diagnostic and/or prognostic biomarkers were indicated. Finally, exosomes from FTC and 8305C cells displayed ability to stimulate migratory properties of recipient Nthy-ori 3-1 cells. Additionally, 8305C-derived exosomes increased recipient cell viability. CONCLUSIONS Multiple proteins identified in thyroid cancer-derived exosomes have a direct link to thyroid cancer progression. Also, in functional tests exosomes enhanced growth and dissemination of non-transformed thyroid cells. GENERAL SIGNIFICANCE The obtained results expands the knowledge concerning the role of exosomal proteins in thyroid cancer and indicate potential biomarkers for further evaluation in clinical settings.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland.
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Bożena Skupień-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
3
|
Betto F, Chiricosta L, Mazzon E. An In Silico Analysis Reveals Sustained Upregulation of Neuroprotective Genes in the Post-Stroke Human Brain. Brain Sci 2023; 13:986. [PMID: 37508918 PMCID: PMC10377198 DOI: 10.3390/brainsci13070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a cerebrovascular disease caused by an interruption of blood flow to the brain, thus determining a lack of oxygen and nutrient supply. The ischemic event leads to the activation of several molecular signaling pathways involved in inflammation and the production of reactive oxygen species, causing irreversible neuronal damage. Several studies have focused on the acute phase of ischemic stroke. It is not clear if this traumatic event can influence some of the molecular processes in the affected area even years after the clinical event. In our study, we performed an in silico analysis using freely available raw data with the purpose of evaluating the transcriptomic state of post-mortem brain tissue. The samples were taken from non-fatal ischemic stroke patients, meaning that they suffered an ischemic stroke and lived for a period of about 2 years after the event. These samples were compared with healthy controls. The aim was to evaluate possible recovery processes useful to mitigating neuronal damage and the detrimental consequences of stroke. Our results highlighted differentially expressed genes codifying for proteins along with long non-coding genes with anti-inflammatory and anti-oxidant functions. This suggests that even after an amount of time from the ischemic insult, different neuroprotective mechanisms are activated to ameliorate brain conditions and repair post-stroke neuronal injury.
Collapse
Affiliation(s)
- Federica Betto
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
4
|
Rodriguez A, Corchete LA, Alcazar JA, Montero JC, Rodriguez M, Chinchilla-Tábora LM, Vidal Tocino R, Moyano C, Muñoz-Bravo S, Sayagués JM, Abad M. Dysregulated Expression of Three Genes in Colorectal Cancer Stratifies Patients into Three Risk Groups. Cancers (Basel) 2022; 14:cancers14174076. [PMID: 36077612 PMCID: PMC9454483 DOI: 10.3390/cancers14174076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in recent years in the study of the molecular profile of sporadic colorectal cancer (sCRC), the specific genetic events that lead to increased aggressiveness or the development of the metastatic process of tumours are not yet clear. In previous studies of the gene expression profile (GEP) using a high-density array (50,000 genes and 6000 miRNAs in a single assay) in sCRC tumours, we identified a 28-gene signature that was found to be associated with an adverse prognostic value for predicting patient survival. Here, we analyse the differential expression of these 28 genes for their possible association with tumour local aggressiveness and metastatic processes in 66 consecutive sCRC patients, followed for >5 years, using the NanoString nCounter platform. The global transcription profile (expression levels of the 28 genes studied simultaneously) allowed us to discriminate between sCRC tumours and nontumoral colonic tissues. Analysis of the biological and functional significance of the dysregulated GEPs observed in our sCRC tumours revealed 31 significantly altered canonical pathways. Among the most commonly altered pathways, we observed the increased expression of genes involved in signalling pathways and cellular processes, such as the PI3K-Akt pathway, the interaction with the extracellular matrix (ECM), and other functions related to cell signalling processes (SRPX2). From a prognostic viewpoint, the altered expression of BST2 and SRPX2 genes were the only independent variables predicting for disease-free survival (DFS). In addition to the pT stage at diagnosis, dysregulated transcripts of ADH1B, BST2, and FER1L4 genes showed a prognostic impact on OS in the multivariate analysis. Based on the altered expression of these three genes, a scoring system was built to stratify patients into low-, intermediate-, and high-risk groups with significantly different 5-year OS rates: 91%, 83%, and 52%, respectively. The prognostic impact was validated in two independent series of sCRC patients from the public GEO database (n = 562 patients). In summary, we show a strong association between the altered expression of three genes and the clinical outcome of sCRC patients, making them potential markers of suitability for adjuvant therapy after complete tumour resection. Additional prospective studies in larger series of patients are required to confirm the clinical utility of the newly identified biomarkers because the number of patients analysed remains small.
Collapse
Affiliation(s)
- Alba Rodriguez
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Luís Antonio Corchete
- Cancer Research Center and Hematology Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José Antonio Alcazar
- General and Gastrointestinal Surgery Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Juan Carlos Montero
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Marta Rodriguez
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Rosario Vidal Tocino
- Medical Oncology Service and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Carlos Moyano
- Clinical Biochemistry Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Saray Muñoz-Bravo
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José María Sayagués
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (J.M.S.); (M.A.)
| | - Mar Abad
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (J.M.S.); (M.A.)
| |
Collapse
|
5
|
Sushi-Repeat-Containing Protein X-Linked 2: A Potential Therapeutic Target for Inflammation and Cancer Therapy. J Immunol Res 2022; 2022:2931214. [PMID: 35935582 PMCID: PMC9352485 DOI: 10.1155/2022/2931214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence has showed that sushi-repeat-containing protein X-linked 2 (SRPX2) is an abnormal expression in a variety of cancers and involved in cancer carcinogenesis, chemosensitivity, and prognosis, which mainly promote cancer cell metastasis, invasion, and migration by regulating the uPAR/integrins/FAK signaling pathway, epithelial-mesenchymal transition (EMT), angiogenesis, and glycosylation. Inflammation has been regarded as a key role in regulating cancer initiation, progression, EMT, and therapeutics. Furthermore, SRPX2 exhibited excellent antifibrosis effect via the TGFβR1/SMAD3/SRPX2/AP1/SMAD7 signaling pathway. Therefore, this review provides compelling evidence that SRPX2 might be a therapeutic target for inflammation and cancer-related inflammation for future cancer therapeutics.
Collapse
|
6
|
Guiraldelli GG, Prado MCM, de F Lainetti P, Leis-Filho AF, Kobayashi PE, Cury SS, Fonseca-Alves CE, Laufer-Amorim R. Pathways Involved in the Development of Vasculogenic Mimicry in Canine Mammary Carcinoma Cell Cultures. J Comp Pathol 2022; 192:50-60. [DOI: 10.1016/j.jcpa.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
|
7
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
8
|
Chen H, Zeng Y, Shao M, Zhao H, Fang Z, Gu J, Liao B, Jin Y. Calcineurin A gamma and NFATc3/SRPX2 axis contribute to human embryonic stem cell differentiation. J Cell Physiol 2021; 236:5698-5714. [PMID: 33393109 DOI: 10.1002/jcp.30255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022]
Abstract
Our understanding of signaling pathways regulating the cell fate of human embryonic stem cells (hESCs) is limited. Calcineurin-NFAT signaling is associated with a wide range of biological processes and diseases. However, its role in controlling hESC fate remains unclear. Here, we report that calcineurin A gamma and the NFATc3/SRPX2 axis control the expression of lineage and epithelial-mesenchymal transition (EMT) markers in hESCs. Knockdown of PPP3CC, the gene encoding calcineurin A gamma, or NFATC3, downregulates certain markers both at the self-renewal state and during differentiation of hESCs. Furthermore, NFATc3 interacts with c-JUN and regulates the expression of SRPX2, the gene encoding a secreted glycoprotein known as a ligand of uPAR. We show that SRPX2 is a downstream target of NFATc3. Both SRPX2 and uPAR participate in controlling expression of lineage and EMT markers. Importantly, SRPX2 knockdown diminishes the upregulation of multiple lineage and EMT markers induced by co-overexpression of NFATc3 and c-JUN in hESCs. Together, this study uncovers a previously unknown role of calcineurin A gamma and the NFATc3/SRPX2 axis in modulating the fate determination of hESCs.
Collapse
Affiliation(s)
- Hao Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanwu Zeng
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Min Shao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanzhi Zhao
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Gu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Liao
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Basic Clinical Research Center, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Basic Clinical Research Center, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Gao Z, Wu J, Wu X, Zheng J, Ou Y. SRPX2 boosts pancreatic cancer chemoresistance by activating PI3K/AKT axis. Open Med (Wars) 2020; 15:1072-1082. [PMID: 33336063 PMCID: PMC7718643 DOI: 10.1515/med-2020-0157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
Background and aim This investigation was aimed at disclosing whether SRPX2 affected pancreatic cancer (PC) chemoresistance by regulating PI3K/Akt/mTOR signaling. Methods Totally 243 PC patients were recruited, and they were incorporated into partial remission (PR) group, stable disease (SD) group and progressive disease (PD) group in accordance with their chemotherapeutic response. PC cell lines (i.e. AsPC1, Capan2, VFPAC-1, HPAC, PANC-1, BxPC-3 and SW1990) and human pancreatic ductal epithelial cell lines (hTERT-HPNE) were also collected. Results PC patients of SD + PD group were associated with higher post-chemotherapeutic SRPX2 level than PR group, and their post-chemotherapeutic SRPX2 level was above the pretherapeutic SRPX2 level (P < 0.05). PR population showed lower SRPX2 level after chemotherapy than before chemotherapy (P < 0.05). Besides high serum SRPX2 level and SRPX2 level change before and after chemotherapy were independent predictors of poor PC prognosis. Additionally, si-SRPX2 enhanced chemosensitivity of PC cell lines, and expressions of p-PI3K, p-AKT and p-mTOR were suppressed by si-SRPX2 (P < 0.05). IGF-1 treatment could changeover the impact of si-SRPX2 on proliferation, migration, invasion and chemoresistance of PC cells (P < 0.05). Conclusion The SRPX2-PI3K/AKT/mTOR axis could play a role in modifying progression and chemoresistance of PC cells, which might help to improve PC prognosis.
Collapse
Affiliation(s)
- Zhenyuan Gao
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Anhui, China
| | - Jisong Wu
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Anhui, China
| | - Xiao Wu
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Anhui, China
| | - Jialei Zheng
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Anhui, China
| | - Yimei Ou
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Anhui, China
| |
Collapse
|
10
|
Sasahira T, Kurihara-Shimomura M, Nishiguchi Y, Shimomura H, Kirita T. Sushi Repeat Containing Protein X-linked 2 Is a Downstream Signal of LEM Domain Containing 1 and Acts as a Tumor-Promoting Factor in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21103655. [PMID: 32455867 PMCID: PMC7279144 DOI: 10.3390/ijms21103655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023] Open
Abstract
Because oral squamous cell carcinomas (OSCCs) have a high potential for locoregional invasion and nodal metastasis, early detection and treatment are essential. A LAP2, emerin, MAN1 (LEM) domain containing 1 (LEMD1) is associated with local progression, clinical stage, nodal metastasis, poor prognosis, angiogenesis, and lymphangiogenesis in OSCC. Although LEMD is a cancer-testis antigen, the cancer-related signals related to LEMD1 remain unknown. In this study, we used a microarray analysis of OSCC cells to identify sushi repeat containing protein X-linked 2 (SRPX2) as a LEMD1-related downstream signal. LEMD1 expression was correlated with lymph node metastasis of OSCC according to the immunohistochemistry analysis. Furthermore, patients expressing SRPX2 had a significantly worse prognosis than those without SRPX2 expression. The concentration of SRPX2 in OSCC was positively correlated with the concentrations of LEMD1, urokinase plasminogen activator receptor (uPAR), and hepatocyte growth factor (HGF). In OSCC cells, SRPX2 secretion levels were elevated by interactions with uPAR and HGF. We also found that SRPX2 promotes endothelial cell proliferation and adhesion between endothelial cells and OSCC cells. These results suggest that SRPX2 might be a useful tumor marker for OSCC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/secondary
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/genetics
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Hepatocyte Growth Factor/metabolism
- Humans
- Lymphatic Metastasis
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/mortality
- Mouth Neoplasms/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Oligonucleotide Array Sequence Analysis
- Prognosis
- RNA, Small Interfering
- Receptors, Urokinase Plasminogen Activator/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (M.K.-S.); (Y.N.)
- Correspondence: ; Tel.: +81-744-29-8849; Fax: +81-744-25-7308
| | - Miyako Kurihara-Shimomura
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (M.K.-S.); (Y.N.)
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (H.S.); (T.K.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (M.K.-S.); (Y.N.)
| | - Hiroyuki Shimomura
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (H.S.); (T.K.)
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (H.S.); (T.K.)
| |
Collapse
|
11
|
Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M. Transcriptome signature of cellular senescence. Nucleic Acids Res 2019; 47:7294-7305. [PMID: 31251810 DOI: 10.1093/nar/gkz555] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence, an integral component of aging and cancer, arises in response to diverse triggers, including telomere attrition, macromolecular damage and signaling from activated oncogenes. At present, senescent cells are identified by the combined presence of multiple traits, such as senescence-associated protein expression and secretion, DNA damage and β-galactosidase activity; unfortunately, these traits are neither exclusively nor universally present in senescent cells. To identify robust shared markers of senescence, we have performed RNA-sequencing analysis across eight diverse models of senescence triggered in human diploid fibroblasts (WI-38, IMR-90) and endothelial cells (HUVEC, HAEC) by replicative exhaustion, exposure to ionizing radiation or doxorubicin, and expression of the oncogene HRASG12V. The intersection of the altered transcriptomes revealed 50 RNAs consistently elevated and 18 RNAs consistently reduced across all senescence models, including many protein-coding mRNAs and some non-coding RNAs. We propose that these shared transcriptome profiles will enable the identification of senescent cells in vivo, the investigation of their roles in aging and malignancy and the development of strategies to target senescent cells therapeutically.
Collapse
Affiliation(s)
- Gabriel Casella
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224, USA
| |
Collapse
|
12
|
Anwer M, Bolkvadze T, Puhakka N, Ndode-Ekane XE, Pitkänen A. Genotype and Injury Effect on the Expression of a Novel Hypothalamic Protein Sushi Repeat-Containing Protein X-Linked 2 (SRPX2). Neuroscience 2019; 415:184-200. [DOI: 10.1016/j.neuroscience.2019.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
13
|
The uPAR System as a Potential Therapeutic Target in the Diseased Eye. Cells 2019; 8:cells8080925. [PMID: 31426601 PMCID: PMC6721659 DOI: 10.3390/cells8080925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of vascular networks is characteristic of eye diseases associated with retinal cell degeneration and visual loss. Visual impairment is also the consequence of photoreceptor degeneration in inherited eye diseases with a major inflammatory component, but without angiogenic profile. Among the pathways with high impact on vascular/degenerative diseases of the eye, a central role is played by a system formed by the ligand urokinase-type plasminogen activator (uPA) and its receptor uPAR. The uPAR system, although extensively investigated in tumors, still remains a key issue in vascular diseases of the eye and even less studied in inherited retinal pathologies such as retinitis pigmantosa (RP). Its spectrum of action has been extended far beyond a classical pro-angiogenic function and has emerged as a central actor in inflammation. Preclinical studies in more prevalent eye diseases characterized by neovascular formation, as in retinopathy of prematurity, wet macular degeneration and rubeosis iridis or vasopermeability excess as in diabetic retinopathy, suggest a critical role of increased uPAR signaling indicating the potentiality of its modulation to counteract neovessel formation and microvascular dysfunction. The additional observation that the uPAR system plays a major role in RP by limiting the inflammatory cascade triggered by rod degeneration rises further questions about its role in the diseased eye.
Collapse
|
14
|
Lang A, Kirchner M, Stefanowski J, Durst M, Weber MC, Pfeiffenberger M, Damerau A, Hauser AE, Hoff P, Duda GN, Buttgereit F, Schmidt-Bleek K, Gaber T. Collagen I-based scaffolds negatively impact fracture healing in a mouse-osteotomy-model although used routinely in research and clinical application. Acta Biomater 2019; 86:171-184. [PMID: 30616076 DOI: 10.1016/j.actbio.2018.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
Although several biomaterials for bone regeneration have been developed in the last decades, clinical application of bone morphogenetic protein 2 is clinically only approved when applied on an absorbable bovine collagen I scaffold (ACS) (Helistat; ACS-H). In research, another ACS, namely Lyostypt (ACS-L) is frequently used as a scaffold in bone-linked studies. Nevertheless, until today, the influence of ACS alone on bone healing remains unknown. Unexpectedly, in vitro studies using ASC-H revealed a suppression of osteogenic differentiation and a significant reduction of cell vitality when compared to ASC-L. In mice, we observed a significant delay in bone healing when applying ACS-L in the fracture gap during femoral osteotomy. The results of our study show for the first time a negative influence of both ACS-H and ACS-L on bone formation demonstrating a substantial need for more sophisticated delivery systems for local stimulation of bone healing in both clinical application and research. STATEMENT OF SIGNIFICANCE: Our study provides evidence-based justification to promote the development and approval of more suitable and sophisticated delivery systems in bone healing research. Additionally, we stimulate researchers of the field to consider that the application of those scaffolds as a delivery system for new substances represents a delayed healing approach rather than a normal bone healing which could greatly impact the outcome of those studies and play a pivotal role in the translation to the clinics. Moreover, we provide impulses on underlying mechanism involving the roles of small-leucine rich proteoglycans (SLRP) for further detailed investigations.
Collapse
|
15
|
Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019; 20:ijms20040937. [PMID: 30795533 PMCID: PMC6412294 DOI: 10.3390/ijms20040937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. Methods: Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. Results: c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. Conclusions: The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Collapse
|
16
|
SRPX2 knockdown inhibits cell proliferation and metastasis and promotes chemosensitivity in esophageal squamous cell carcinoma. Biomed Pharmacother 2019; 109:671-678. [DOI: 10.1016/j.biopha.2018.10.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
|
17
|
Anwer M, Bolkvadze T, Ndode-Ekane XE, Puhakka N, Rauramaa T, Leinonen V, van Vliet EA, Swaab DF, Haapasalo A, Leskelä S, Bister N, Malm T, Carlson S, Aronica E, Pitkänen A. Sushi repeat-containing protein X-linked 2: A novel phylogenetically conserved hypothalamo-pituitary protein. J Comp Neurol 2018; 526:1806-1819. [PMID: 29663392 DOI: 10.1002/cne.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel protein associated with language development, synaptic plasticity, tissue remodeling, and angiogenesis. We investigated the expression and spatial localization of SRPX2 in normal mouse, rat, monkey, and human brain using in situ hybridization and immunohistochemistry. Antibody specificity was determined using in vitro siRNA based silencing of SRPX2. Cell type-specific expression was verified by double-labeling with oxytocin or vasopressin. Western blot was used to detect SRPX2 protein in rat and human plasma and cerebrospinal fluid. Unexpectedly, SRPX2 mRNA expression levels were strikingly higher in the hypothalamus as compared to the cortex. All SRPX2 immunoreactive (ir) neurons were localized in the hypothalamic paraventricular, periventricular, and supraoptic nuclei in mouse, rat, monkey, and human brain. SRPX2 colocalized with vasopressin or oxytocin in paraventricular and supraoptic neurons. Hypothalamic SRPX2-ir positive neurons gave origin to dense projections traveling ventrally and caudally toward the hypophysis. Intense axonal varicosities and terminal arborizations were identified in the rat and human neurohypophysis. SRPX2-ir cells were also found in the adenohypophysis. Light SRPX2-ir projections were observed in the dorsal and ventral raphe, locus coeruleus, and the nucleus of the solitary tract in mouse, rat and monkey. SRPX2 protein was also detected in plasma and CSF. Our data revealed intense phylogenetically conserved expression of SRPX2 protein in distinct hypothalamic nuclei and the hypophysis, suggesting its active role in the hypothalamo-pituitary axis. The presence of SRPX2 protein in the plasma and CSF suggests that some of its functions depend on secretion into body fluids.
Collapse
Affiliation(s)
- Mehwish Anwer
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tamuna Bolkvadze
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, KNAW, Amsterdam, The Netherlands
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nea Bister
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|