1
|
Li G, Cai M, Zheng X, Xie X, Zhu Y, Long Y. Impact of disinfectants on the intestinal bacterial symbionts and immunity of silkworm (Bombyx mori L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79545-79554. [PMID: 35713834 DOI: 10.1007/s11356-022-21442-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The insect egg surface can serve as a vehicle for vertical symbiont transmission from the maternal parent to its offspring. Hypochlorite and formaldehyde are two common disinfectants used for insect egg surface sterilization. Here, we explored the intestinal microecology and immune response profile of the silkworm Bombyx mori strain Dazao after disinfectant exposure by using high-throughput sequencing technology and real-time PCR analysis. After egg surface sterilization, no significant difference (P > 0.05) in overall body weight was observed among the control, sodium hypochlorite, and formaldehyde groups. 16S rRNA metagenomic sequencing revealed that the main abundant intestinal bacteria were Enterococcus, Burkholderia, Phenylobacterium, Ralstonia, Chitinophaga, Bradyrhizobium, Herbaspirillum, and two unclassified Bacteroidetes species. Egg surface sterilization evidently altered the composition and abundance of intestinal microbiota but did not significantly change its alpha diversity. The dysbiosis of intestinal microbiota resulted in the perturbation of the immune response profile of the silkworm intestine. Our findings reveal that hypochlorite has a blocking effect on the symbiont transmission compared with formaldehyde. More importantly, egg surface sterilization exerts substantial effects on the ecophysiological traits of insects. The present study contributes to the scientific and reasonable application of disinfectants for insect egg surface sterilization during industrial silk production and laboratory-scale insect rearing.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Miao Cai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
- Foshan Nanshanhu Experimental High School, Foshan, 528200, China
| | - Xi Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Xiaofan Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Yong Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China
| | - Yaohang Long
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China.
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China.
| |
Collapse
|
2
|
Wu J, Shen G, Liu D, Xu H, Jiao M, Zhang Y, Lin Y, Zhao P. The Response of the Estrogen-Related Receptor to 20-Hydroxyecdysone in Bombyx mori: Insight Into the Function of Estrogen-Related Receptor in Insect 20-Hydroxyecdysone Signaling Pathway. Front Physiol 2022; 12:785637. [PMID: 35115955 PMCID: PMC8804299 DOI: 10.3389/fphys.2021.785637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Estrogen-related receptor (ERR) is an orphan nuclear receptor that was first discovered in animals, and play an important role in metabolism, development, and reproduction. Despite extensive research on the function of ERR, its transcriptional regulation mechanism remains unclear. In this study, we obtained the upstream region of Bombyx mori ERR (BmERR) and confirmed the promoter activity of this region. Interestingly, we found that 10 and 50 nM 20-hydroxyecdysone (20E) up-regulated the transcriptional activity of BmERR promoter. In addition, eight putative ecdysone response elements (EcREs) were predicted in the upstream sequence of BmERR. Based on their positions, the upstream sequence of BmERR was truncated into different fragments. Finally, an EcRE-like sequence (5′-AGTGCAGTAAACTGT-3′) was identified. Electrophoretic mobility shift assay (EMSA) and cell transfection experiments confirmed that this motif specifically binds to the complex formed between ecdysone receptor (BmEcR) and the ultraspiracle (BmUSP), a key complex in the 20E signaling pathway. Interference of BmERR or BmEcR mRNA in the embryonic cells of Bombyx mori significantly affected the expression of BmEcR and BmUSP. Overall, these results suggested that an EcRE element was identified from BmERR, and this will help understanding the detailed regulatory mechanism of ERR in insects.
Collapse
Affiliation(s)
- Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Die Liu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Haoran Xu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Mengyao Jiao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yungui Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- *Correspondence: Ying Lin,
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Ping Zhao,
| |
Collapse
|