1
|
Zhang Y, Li X, Zhang S, Li J, Liu M, Lu Y, Han J. Role of IFITM2 in osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. Intractable Rare Dis Res 2024; 13:42-50. [PMID: 38404731 PMCID: PMC10883848 DOI: 10.5582/irdr.2023.01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024] Open
Abstract
Interferon-inducible transmembrane (IFITM) are a family of small proteins localized to plasma and endolysosomal membranes. Their functions beyond restricting viral entry and replication have been revealed in recent years. IFITM5 is involved in bone mineralization and is an osteogenic cell surface marker. IFITM1 and 3 interact with desmin and myosin, and are involved in myogenic differentiation. This study found upregulation of Ifitm2 during osteogenic differentiation of C3H10T1/2 cells. This positively correlated to the expression of osteogenic differentiation markers Col1a1, Alp, Runx2, and Ocn. Knockdown of Ifitm2 by siRNAs inhibited osteogenic differentiation, calcium deposition, and osteogenic marker expression of C3H10T1/2 cells. The osteoblast transcriptome revealed that knocking down Ifitm2 affected the expression Wnt signaling pathway-related genes, including Wnt family members, their receptors Lrp, Frizzled, and Lgr, and transmembrane molecule Rnf43 that suppresses the Wnt signaling pathway. Luciferase assays indicated enhancement of canonical Wnt signaling pathways by Ifitm2 overexpression. Furthermore, IFITM2 was colocalized in the metaphyseal bone and growth plate of the mouse tibial bone with SP7, a transcription factor essential for osteoblast differentiation and bone formation. These findings reveal a possible novel function and potential mechanisms of Ifitm2 in osteogenic differentiation.
Collapse
Affiliation(s)
- Yongtao Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xiangdong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Shanshan Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Junfeng Li
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Meilin Liu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| |
Collapse
|
2
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
3
|
Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review. Biomedicines 2022; 10:biomedicines10102363. [PMID: 36289625 PMCID: PMC9598403 DOI: 10.3390/biomedicines10102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a large group of genetically heterogeneous diseases resulting from decreased bone density and an abnormal microarchitecture, which are clinically manifested by abnormal bone fractures. A distinctive clinical feature of this group of diseases is the presence of spontaneous fractures and skeletal deformities. However, the clinical manifestations of different types of OI are characterized by marked polymorphism with variable severity of skeletal and extra-skeletal features. Previous studies have shown that a mutation (c.-14C>T) in the IFITM5 gene is responsible for autosomal dominant OI type V. However, the mutation has a variable expression pattern and marked clinical heterogeneity. In this study, a clinical and genetic analysis of 12 cases with molecularly confirmed OI type V from 12 unrelated families was performed. Significant clinical heterogeneity of the disease with the same molecular defect was detected. In six subjects (50%), there were no classic signs of OI type V (formation of a hyperplastic bone callus, calcification of the interosseous membrane and dislocation of the radial head). In all cases, the mutation occurred de novo.
Collapse
|
4
|
Liu P, Zhang Y, Zhang S, Peng C, Yang W, Li X, Zhang C, Li M, Han J, Lu Y. Integrative overview of IFITMs family based on Bioinformatics analysis. Intractable Rare Dis Res 2021; 10:165-172. [PMID: 34466338 PMCID: PMC8397817 DOI: 10.5582/irdr.2021.01041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 01/11/2023] Open
Abstract
Human interferon-induced transmembrane proteins (IFITMs) family is a multi-functional biomacromolecule family playing a critical role in various physiological processes, such as, antiviral immunity, tumor suppression, and bone formation. Although there are many studies proving that a subset of tumors strongly links to the changes of IFITMs, the link between different IFITMs mutant types and diverse tumors has not been studied thoroughly. To investigate the law of expression among IFITMs internal members and the linking of IFITMs mutant types and cancers, online databases were used to pool together relevant data for bioinformatics analysis. Here, we summarize mutations, expression, and functions of human IFITMs, analyze diverse expression levels of IFITMs in physiological and pathological tissues, predict protein-protein interaction (PPI) networks, and target miRNAs and relevant signaling pathways of IFITMs. The results show that IFITM1, IFITM2, and IFITM3 have similar motif pattern constructions and physiological functions, while IFITM5 and IFITM10 show far diversity from them. Particularly, IFITM1-3, in conjunction with interacting proteins, is strongly related to development and overall survival rates of a portion of cancers, including renal cancer and uveal melanoma (UVM). This trait may make IFITM1-3 become a prognostic marker of cancers. Meanwhile, hsa_circ_0116375 has been found as the common circRNA for IFITM2, IFITM3, IFITM5, and IFITM10.
Collapse
Affiliation(s)
- Pengchao Liu
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Yongtao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Shanshan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Chuanming Peng
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Wei Yang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xianxian Li
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Chao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Mian Li
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Jinxiang Han
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Yanqin Lu
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, Shandong, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- Address correspondence to:Yanqin Lu, Shandong First Medical University & Shandong Academy of Medical Sciences. # 6699 Qingdao Road, Ji'nan 250117, China. E-mail:
| |
Collapse
|
5
|
Wang H, Wang L, Li J, Fu F, Zheng Y, Zhang L. Molecular characterization, expression and functional analysis of yak IFITM3 gene. Int J Biol Macromol 2021; 184:349-357. [PMID: 34119542 DOI: 10.1016/j.ijbiomac.2021.06.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023]
Abstract
IFITM3 is interferon-induced transmembrane 3, which plays an extremely key role in anti-proliferation, anti-virus and anti-tumor diseases. In this study, the yak (Bos grunniens) IFITM3 (BgIFITM3) gene contained a 5'-untranslated region (UTR) (25 bp), a coding region (441 bp), and a 3'-UTR (115 bp). The expression of BgIFITM3 gene in liver was significantly higher than that in heart, spleen, lung and kidney (P < 0.01). BgIFITM3 protein was localized on the yak hepatocyte plasma membrane, and its expression was significantly different between 1 day and 15 months of age (P < 0.05). Moreover, the prokaryotic expression vector of BgIFITM3 protein was constructed and expressed successfully, with a molecular weight of 19.5 kDa. The activities of yak hepatocyte were significantly inhibited after treating with BgIFITM3 protein (10 and 20 μg/mL) (P < 0.01). The expression levels of ERBB-2, IRS-1, PI3KR-1, AKT-1 and MAPK-3 were significantly lower after treating with 20 μg/mL BgIFITM3 protein (P < 0.05). Besides, the activities of HepG2 cells were significantly inhibited after treating with BgIFITM3 protein (1, 10 and 20 μg/mL) (P < 0.05). While, the cloning ability and migration ability of HepG2 cells were significantly inhibited after treating with 10 μg/mL BgIFITM3 protein (P < 0.05). Finally, the mitochondria of HepG2 cells was concentrated, cristae widened, and the double film density of mitochondria was increased after treating with 10 μg/mL BgIFITM3 protein. After 10 μg/mL BgIFITM3 protein treating, the expression levels of VDAC-2, VDAC-3 and p53 genes were significantly increased, but the expression level of GPX-4 gene was significantly decreased (P < 0.01). Taken together, the BgIFITM3 protein could inhibit the proliferations of yak hepatocyte and HepG2 cells by regulating the PI3K/Akt pathway or ferroptosis-related genes, respectively. These results benefit for further study of the function of BgIFITM3 protein.
Collapse
Affiliation(s)
- Haipeng Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fang Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yao Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
6
|
Porcine IFITM1 is a host restriction factor that inhibits pseudorabies virus infection. Int J Biol Macromol 2019; 151:1181-1193. [PMID: 31743714 PMCID: PMC7102536 DOI: 10.1016/j.ijbiomac.2019.10.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Interferon-inducible transmembrane proteins (IFITMs) restrict infection by several viruses, such as influenza A virus, West Nile virus and dengue virus. It has not been determined whether porcine IFITMs (pIFITMs) inhibit infection by pseudorabies virus (PRV), an enveloped, double-stranded DNA virus, which is the etiological agent of Aujeszky's disease in pigs. Here, we report that PRV infection elicited pIFITM1 expression in PK15 porcine kidney epithelial cells and 3D4/21 alveolar macrophages. pIFITM2 and pIFITM3 expression was only elevated in PK15 cells during PRV infection. Depletion of pIFITM1 using RNA interference, either in PK15 or in 3D4/21 cells, enhanced PRV infection while overexpression of pIFITM1 had the opposite effect. Knockdown of pIFITM2 and pIFITM3 did not influence PRV infection, suggesting that pIFITM2 and pIFITM3 are independent of PRV infection. PRV-induced pIFITM1 expression was dependent on the cGAS/STING/TBK1/IRF3 innate immune pathway and interferon-alpha receptor-1, suggesting that pIFITM1 is up-regulated by the type I interferon signaling pathway. The anti-PRV role of pIFITM1 was inhibited upon PRV entry. Our data demonstrate that pIFITM1 is a host restriction factor that inhibits PRV entry that may shed light on a strategy for prevention of PRV infection.
Collapse
|