1
|
Overcoming Basal Autophagy, Kangai Injection Enhances Cisplatin Cytotoxicity by Regulating FOXO3a-Dependent Autophagic Cell Death and Apoptosis in Human Lung Adenocarcinoma A549/DDP Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6022981. [PMID: 36093402 PMCID: PMC9458369 DOI: 10.1155/2022/6022981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
Cisplatin resistance is one of the major obstacles in the treatment of nonsmall cell lung cancer (NSCLC). Kangai injection (KAI), a Chinese herbal medicine, has been used in tumors as adjuvant treatment, but its exact antitumor mechanism is still unclear. In this study, we first demonstrated that cisplatin-resistant A549/DDP cells showed a higher level of basal autophagy in response to cisplatin treatment with increasing autophagic protein expression levels of Beclin 1, p62, and LC3 compared to cisplatin-sensitive A549/DDP cells; then, we assessed the antitumor effect of KAI in cisplatin-resistant lung adenocarcinoma A549/DDP cells. Our results showed that KAI exhibited direct cytotoxic and chemosensitizing effects in A549/DDP cells. Combining KAI with cisplatin promoted A549/DDP cell apoptosis, which was confirmed by cell cycle arrest, condensed nuclear chromatin, annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, and apoptosis-related protein expression. In addition, combining KAI with cisplatin induced autophagic cell death in A549/DDP cells with a high level of basal autophagy, as indicated by an increase in LC3 spot count, an accumulation of Beclin 1 and LC3 II, and reduced p62 protein expression. We also found that the apoptosis and autophagic cell death induced by cotreatment of KAI and cisplatin in A549/DDP cells were FOXO3a-dependent as indicated by decreased p-FOXO3a expression and increased FOXO3a nuclear localization, respectively. Furthermore, the FOXO3a gene knockdown assay further confirmed that KAI enhanced cisplatin cytotoxicity in A549/DDP cells with a high level of basal autophagy by inducing apoptosis and autophagic cell death in a FOXO3a-dependent manner. These findings suggest that the combination of KAI and cisplatin might support the potential clinical treatment as a novel strategy to overcome cisplatin resistance.
Collapse
|
2
|
Dang YF, Yang SH, Jiang XN, Gong FL, Yang XX, Cheng YN, Guo XL. Combination treatment strategies with a focus on rosiglitazone and adriamycin for insulin resistant liver cancer. J Drug Target 2021; 29:336-348. [PMID: 33115283 DOI: 10.1080/1061186x.2020.1844216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Insulin resistance promotes the occurrence of liver cancer and decreases its chemosensitivity. Rosiglitazone (ROSI), a thiazolidinedione insulin sensitiser, could be used for diabetes with insulin resistance and has been reported to show anticancer effects on human malignant cells. In this paper, we investigated the combination of ROSI and chemotherapeutics on the growth and metastasis of insulin-resistant hepatoma. In vitro assay, ROSI significantly enhanced the inhibitory effects of adriamycin (ADR) on the proliferation, autophagy and migration of insulin-resistant hepatoma HepG2/IR cells via downregulation of EGFR/ERK and AKT/mTOR signalling pathway. In addition, ROSI promoted the apoptosis of HepG2/IR cells induced by ADR. In vivo assay, high fat and glucose diet and streptozotocin (STZ) induced insulin resistance in mice by increasing the body weight, fasting blood glucose (FBG) level, oral glucose tolerance, fasting insulin level and insulin resistance index. Both the growth of mouse liver cancer hepatoma H22 cells and serum FBG level in insulin resistant mice were significantly inhibited by combination of ROSI and ADR. Thus, ROSI and ADR in combination showed a stronger anti-tumour effect in insulin resistant hepatoma cells accompanying with glucose reduction and might represent an effective therapeutic strategy for liver cancer accompanied with insulin resistant diabetes.
Collapse
Affiliation(s)
- Yi-Fan Dang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Shao-Hui Yang
- Shandong Wendeng Osteopathic Hospital, Wendeng, PR China
| | - Xiao-Ning Jiang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Fu-Lian Gong
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yan-Na Cheng
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
3
|
Wuxiao Z, Wang H, Su Q, Zhou H, Hu M, Tao S, Xu L, Chen Y, Hao X. MicroRNA‑145 promotes the apoptosis of leukemic stem cells and enhances drug‑resistant K562/ADM cell sensitivity to adriamycin via the regulation of ABCE1. Int J Mol Med 2020; 46:1289-1300. [PMID: 32945355 PMCID: PMC7447303 DOI: 10.3892/ijmm.2020.4675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
Leukemia is a type of cancer which originates in blood-forming tissues. MicroRNAs (miRNAs or miRs) have been shown to be involved leukemogenesis. In the present study, following the gain- and loss-function of miR-145 and ATP-binding cassette sub-family E member 1 (ABCE1) in K562 cells and K562 adriamycin-resistant cells (K562/ADM cells), the levels of multidrug resistance protein 1 (MRP1) and P-glycoprotein (P-gp) were measured. The viability of the K562 cells and K562/ADM cells treated with various concentrations of ADM, and cell sensitivity to ADM were measured. The apoptosis of stem cells was detected. K562/ADM cells were transfected with miR-145 mimic or with miR-145 mimic together with ABCE1 overexpression plasmid to examine the effects of ABCE1 on the sensitivity of K562/ADM cells to ADM. The association between miR-145 and ABCE1/MRP1 was then verified. The dose- and time-dependent effects of ADM on the K562 cells and K562/ADM cells were examined. The K562/ADM cells exhibited a greater resistance to ADM, higher levels of MRP1 and P-gp, and a lower miR-145 expression. The K562/ADM cells and stem cells in which miR-145 was overexpressed exhibited a suppressed cell proliferation, decreased MRP1 and P-gp levels, and an increased apoptotic rate. However, K562 cells with a low expression of miR-145 exhibited an increased cell proliferation, increased levels of MRP1 and P-gp, and a suppressed apoptotic rate. Compared with the overexpression of miR-145, the combination of miR-145 and ABCE1 decreased the sensitivity of drug-resistant K562/ADM cells to ADM. The above-mentioned effects of miR-145 were achieved by targeting ABCE1. Taken together, the findings of the present study demonstrate that the overexpression of miR-145 promotes leukemic stem cell apoptosis and enhances the sensitivity of K562/ADM cells to ADM by inhibiting ABCE1.
Collapse
Affiliation(s)
- Zhijun Wuxiao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qunhao Su
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Haiyan Zhou
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Min Hu
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Shi Tao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lu Xu
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yu Chen
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Xinbao Hao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
4
|
Hou G, Bai Y, Jia A, Ren Y, Wang Y, Lu J, Wang P, Zhang J, Lu Z. Inhibition of autophagy improves resistance and enhances sensitivity of gastric cancer cells to cisplatin. Can J Physiol Pharmacol 2020; 98:449-458. [PMID: 32058824 DOI: 10.1139/cjpp-2019-0477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autophagy plays critical roles in tumorigenesis, while the effects of autophagy on chemoresistance of cancer cells had great disparity. This study aims to explore the impacts of autophagy on the sensitivity and resistance of gastric cancer cells to cisplatin (DDP). We firstly demonstrated that there was stronger autophagy activity in gastric cancer SGC-7901 cells than that in DDP-resisting SGC-7901/DDP cells. Then, we discovered that inhibiting autophagy by chloroquine (CQ) significantly enhanced the proliferation-inhibiting and apoptosis-inducing effects of DDP to SGC-7901 and SGC-7901/DDP cells. Moreover, CQ could partially reverse the resistance of SGC-7901/DDP cells to DDP in a concentration-dependent manner. However, the autophagy inducer everolimus (RAD001) had no obvious effects on the sensitivity of gastric cells to DDP. Mechanistically, we demonstrated that CQ might enhance the sensitivity of SGC-7901cells and improve the resistance of SGC-7901/DDP cells to DDP through inhibiting the mTORC1 pathway, especially to SGC-7901/DDP cells. Additionally, we found interfering Beclin-1 using Beclin-1 shRNA also enhanced the proliferation-inhibiting and apoptosis-inducing effects of DDP on gastric cancer cells by inhibiting phosphorylation of Akt. Our study shows that inhibiting autophagy could improve the chemoresistance and enhanced sensitivity of gastric cancer cells to DDP and provide a rationale for the administration of cisplatin combined with CQ for treating patients with gastric cancer.
Collapse
Affiliation(s)
- Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yiru Bai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, People's Republic of China
| | - Ang Jia
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jie Lu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
miR-199a-5p Represses Protective Autophagy and Overcomes Chemoresistance by Directly Targeting DRAM1 in Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:5613417. [PMID: 31636666 PMCID: PMC6766143 DOI: 10.1155/2019/5613417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Chemotherapy resistance is still a primary clinical obstacle to the successful treatment of acute myeloid leukemia (AML). The underlying mechanisms of drug resistance are complicated and have not been fully understood. Here, we found that miR-199a-5p levels were significantly reduced in refractory/relapsed AML patients compared to those who achieved complete remission after chemotherapy. Consistently, miR-199a-5p was markedly decreased in Adriamycin-resistant AML K562/ADM cells in contrast with Adriamycin-sensitive K562 cells, and its decrement dramatically correlated with the chemoresistance of AML cells. Furthermore, we demonstrated that the basic and Adriamycin-induced autophagic activity in K562/ADM cells was higher than that in K562 cells. This inducible autophagy played a prosurvival role and contributed to the development of acquired drug resistance. Importantly, we investigated that miR-199a-5p could negatively regulate autophagy, at least in part, by inhibiting damage regulator autophagy modulator (DRAM1) expression at both the transcriptional and posttranscriptional level. miR-199a-5p bound directly to the 3'-UTR of DRAM1 mRNA which was a functional target of miR-199a-5p. Indeed, downregulation of DRAM1 gene by siRNA in K562/ADM cells resulted in autophagy suppression and chemosensitivity restoration. These results revealed that the miR-199a-5p/DRAM1/autophagy signaling represented a novel pathway regulating chemoresistance, indicating a potential therapeutic strategy for the intervention in drug-resistant AML.
Collapse
|
6
|
Wang F, Zhang Z, Leung WT, Chen J, Yi J, Ying C, Yuan M, Wang M, Zhang N, Qiu X, Wang L, Wei H. Hydroxychloroquine reverses the drug resistance of leukemic K562/ADM cells by inhibiting autophagy. Mol Med Rep 2019; 20:3883-3892. [PMID: 31485616 DOI: 10.3892/mmr.2019.10621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/18/2019] [Indexed: 11/06/2022] Open
Abstract
Autophagy is an essential metabolic pathway mediated by lysosomal degradation, which is involved in scavenging and recycling senescent or damaged organelles and biological macromolecules in eukaryotic cells. The present study explored the association between the autophagic activity and chemotherapy resistance of leukaemia cells, and the possibility of using autophagy inhibitors to combat leukemic drug resistance. It was found that the levels of basic autophagy in multidrug‑resistant leukaemia cells (K562/ADM) were significantly higher compared with sensitive cells (K562), and that Adriamycin (ADM) was capable of inducing autophagic activity in K562 and K562/ADM cells. K562 and K562/ADM cells were treated with a series of hydroxychloroquine (HCQ) concentrations to inhibit cellular autophagy and detect cell sensitivity to ADM. The results demonstrated that the sensitivity of K562 cells to ADM was mildly enhanced by HCQ, and that the sensitivity of K562/ADM cells to ADM was markedly strengthened by HCQ. In addition, more typical morphological changes associated with apoptosis emerged, and the ratio of Bax/Bcl‑2 and activity of caspase‑3 were markedly increased in K562/ADM cells treated with HCQ. Notably, the expression of mdr1 mRNA and P‑glycoprotein (P‑gp) in drug‑resistant K562/ADM cells was upregulated along with increasing autophagic activity induced by ADM. Furthermore, HCQ significantly reduced the increase in P‑gp expression by inhibiting autophagic activity. Collectively, these findings indicated that the inhibition of autophagy significantly promoted the sensitivity of K562/ADM cells to ADM by facilitating apoptosis. Furthermore, inhibition of autophagy attenuated the expression of P‑gp; therefore, P‑gp may be involved in autophagic regulation in drug‑resistant cells.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chunmei Ying
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Minmin Yuan
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Mingyan Wang
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|