1
|
Bagabir HA, Abdulkareem AA, Muthaffar OY, Shirah BH, Naseer MI. Clinical whole Exome Sequencing Reveals Novel Homozygous Missense Variant in the PMPCA Gene causing Autosomal Recessive Spinocerebellar Ataxia. Pak J Med Sci 2024; 40:2243-2250. [PMID: 39554679 PMCID: PMC11568725 DOI: 10.12669/pjms.40.10.10474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 11/19/2024] Open
Abstract
Background & Objective Autosomal recessive cerebellar ataxias (ARCA) are rare heterogenous neurodegenerative disorders characterized by degeneration of the cerebellum and spinal cord with an early onset before the age of 20 years. PMPCA (MIM: 613036), is a key enzyme in mitochondrial protein processing which is critical for cell survival and growth. Our objective was to investigate Peptidase, Mitochondrial Processing Subunit Alpha (PMPCA) mutations linked with Spinocerebellar ataxia, autosomal recessive 2 (SCAR2). Method In the current study, Whole Exome Sequencing (WES) was done followed by Sanger sequencing for the validation of the WES results. Results WES results identified a novel homozygous variant, NM_015160.2: c.802C>T p.(Arg268Trp) in PMPCA gene. Mutation in this gene leads to progressive cerebellar ataxia with fine motor skills difficulties, intentional tremors, slow slurred speech and learning difficulties in a 12-year-old Saudi patient. WES results were further validated by Sanger sequencing technique. Conclusions Identified phenotype in our case was similar as previously described for SCAR2 related conditions. To our knowledge, this is the first reported mutation in PMPCA gene leading to SCAR2 in Saudi Arabia. These findings will enrich the scarce literature, further provide a new insight on the role of PMPCA gene-related disorders leading to SCAR2 and expand the disease concept. In addition, this will help to establish a database for the disease and its causative factors will further help in controlling diseases resulting from consanguinity in Saudi population.
Collapse
Affiliation(s)
- Hala Abubaker Bagabir
- Hala Abubaker Bagabir Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Angham Abdulrhman Abdulkareem Center of Excellence in Genomic Medicine Research, Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Osama Yousef Muthaffar Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bader H. Shirah
- Bader H. Shirah Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Muhammad Imran Naseer Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Assessment and Distribution of Runs of Homozygosity in Horse Breeds Representing Different Utility Types. Animals (Basel) 2022; 12:ani12233293. [PMID: 36496815 PMCID: PMC9736150 DOI: 10.3390/ani12233293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The present study reports runs of homozygosity (ROH) distribution in the genomes of six horse breeds (571 horses in total) representing three horse types (primitive, light, and draft horses) based on the 65k Equine BeadChip assay. Of major interest was the length, quantity, and frequency of ROH characteristics, as well as differences between horse breeds and types. Noticeable differences in the number, length and distribution of ROH between breeds were observed, as well as in genomic inbreeding coefficients. We also identified regions of the genome characterized by high ROH coverage, known as ROH islands, which may be signals of recent selection events. Eight to fourteen ROH islands were identified per breed, which spanned multiple genes. Many were involved in important horse breed characteristics, including WFIKNN2, CACNA1G, STXBP4, NOG, FAM184B, QDPR, LCORL, and the zinc finger protein family. Regions of the genome with zero ROH occurrences were also of major interest in specific populations. Depending on the breed, we detected between 2 to 57 no-ROH regions and identified 27 genes in these regions that were common for five breeds. These genes were involved in, e.g., muscle contractility (CACNA1A) and muscle development (miR-23, miR-24, miR-27). To sum up, the obtained results can be furthered analyzed in the topic of identification of markers unique for specific horse breed characteristics.
Collapse
|
3
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
4
|
Rudenskaya G, Sermyagina I, Chukhrova A, Dadali E, Lozier E, Shchagina O. Diversity of CACNA1A-related disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:106-111. [DOI: 10.17116/jnevro2021121121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Koźmiński W, Pera J. Involvement of the Peripheral Nervous System in Episodic Ataxias. Biomedicines 2020; 8:biomedicines8110448. [PMID: 33105744 PMCID: PMC7690566 DOI: 10.3390/biomedicines8110448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Episodic ataxias comprise a group of inherited disorders, which have a common hallmark—transient attacks of ataxia. The genetic background is heterogeneous and the causative genes are not always identified. Furthermore, the clinical presentation, including intraictal and interictal symptoms, as well as the retention and progression of neurological deficits, is heterogeneous. Spells of ataxia can be accompanied by other symptoms—mostly from the central nervous system. However, in some of episodic ataxias involvement of peripheral nervous system is a part of typical clinical picture. This review intends to provide an insight into involvement of peripheral nervous system in episodic ataxias.
Collapse
Affiliation(s)
- Wojciech Koźmiński
- Department of Neurology, University Hospital, ul. Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503 Krakow, Poland
- Correspondence:
| |
Collapse
|
6
|
Sun J, Sun X, Li Z, Ma D, Lv Y. An elongated tract of polyQ in the carboxyl‑terminus of human α1A calcium channel induces cell apoptosis by nuclear translocation. Oncol Rep 2020; 44:156-164. [PMID: 32626992 PMCID: PMC7251683 DOI: 10.3892/or.2020.7592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
An aberrant elongated tract of glutamine residues (polyQ) in proteins induces multiple diseases treated in the clinic. In our previous study of progressive myoclonic epilepsy (PME), using whole-exome sequencing, a mutant Cav2.1 protein with an aberrant elongated polyQ tract was identified in PME patients. To investigate the molecular mechanism and cell biology of this aberrant elongated polyQ tract, wild-type Cav2.1 with 13 polyQ repeats (Cav2.1 wt-Q13) and mutant-type Cav2.1 with 26 polyQ repeats (Cav2.1 mt-Q26) were prepared and introduced into human SH-SY5Y neuroblastoma cells. Using a WST-1 assay, it was revealed that Cav2.1 mt-Q26 markedly suppressed the proliferation of the SH-SY5Y cells, a result not observed for the Cav2.1 wt-Q13-transfected cells. It was also revealed that Cav2.1 mt and its truncated molecules suppressed cell proliferation by inducing apoptosis rather than arresting the cell cycle. Further investigations indicated a nuclear translocation phenomenon associated with the Cav2.1 mt molecules. Mechanistically, it was revealed that the Cav2.1 mt molecules activated the Bcl-2/Bax, caspase-3 and poly ADP-ribose polymerase (PARP) apoptotic pathways. The present study may provide new insights for interpreting the pathogenesis of PME and the relationship among polyQ, CACNA1A gene mutations and PME.
Collapse
Affiliation(s)
- Ji Sun
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dihui Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yudan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|