1
|
Zhu M, Zeiss C, Hamrick MW, Weinstein RS, Sun BH, Brotto M, Liu X, Siu E, Huttner A, Tommasini S, Simpson C, Insogna K. Mitofusin 2 plays a critical role in maintaining the functional integrity of the neuromuscular-skeletal axis. Bone 2024; 184:117086. [PMID: 38552893 DOI: 10.1016/j.bone.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Mitofusin 2 (Mfn2) is one of two mitofusins involved in regulating mitochondrial size, shape and function, including mitophagy, an important cellular mechanism to limit oxidative stress. Reduced expression of Mfn2 has been associated with impaired osteoblast differentiation and function and a reduction in the number of viable osteocytes in bone. We hypothesized that the genetic absence of Mfn2 in these cells would increase their susceptibility to aging-associated metabolic stress, leading to a progressive impairment in skeletal homeostasis over time. METHODS Mfn2 was selectively deleted in vivo at three different stages of osteoblast lineage commitment by crossing mice in which the Mfn2 gene was floxed with transgenic mice expressing Cre under the control of the promoter for Osterix (OSX), collagen1a1, or DMP1 (Dentin Matrix Acidic Phosphoprotein 1). RESULTS Mice in which Mfn2 was deleted using DMP1-cre demonstrated a progressive and dramatic decline in bone mineral density (BMD) beginning at 10 weeks of age (n = 5 for each sex and each genotype from age 10 to 20 weeks). By 15 weeks, there was evidence for a functional decline in muscle performance as assessed using a rotarod apparatus (n = 3; 2 males/ 1 female for each genotype), accompanied by a decline in lean body mass. A marked reduction in trabecular bone mass was evident on bone histomorphometry, and biomechanical testing at 25 weeks (k/o: 2 male/1 female, control 2 male/2 female) revealed severely impaired femur strength. Extensive regional myofiber atrophy and degeneration was observed on skeletal muscle histology. Electron microscopy showed progressive disruption of cellular architecture, with disorganized sarcomeres and a bloated mitochondrial reticulum. There was also evidence of neurodegeneration within the ventral horn and roots of the lumbar spinal cord, which was accompanied by myelin loss and myofiber atrophy. Deletion of Mfn2 using OSX-cre or Col1a1-cre did not result in a musculoskeletal phenotype. Where possible, male and female animals were analyzed separately, but small numbers of animals in each group limited statistical power. For other outcomes, where sex was not considered, small sample sizes might still limit the strength of the observation. CONCLUSION Despite known functional overlap of Mfn1 and Mfn2 in some tissues, and their co-expression in bone, muscle and spinal cord, deletion of Mfn2 using the 8 kB DMP1 promoter uncovered an important non-redundant role for Mfn2 in maintaining the neuromuscular/bone axis.
Collapse
Affiliation(s)
- Meiling Zhu
- Yale School of Medicine, Section of Endocrinology, New Haven, CT, USA
| | - Caroline Zeiss
- Yale School of Medicine, Section of Comparative Medicine, New Haven, CT, USA
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Institute of Molecular Medicine & Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Robert S Weinstein
- Division of Endocrinology, Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ben-Hua Sun
- Yale School of Medicine, Section of Endocrinology, New Haven, CT, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Xinran Liu
- Yale School of Medicine, Center for Cellular and Molecular Imaging, New Haven, CT, USA
| | - Edwin Siu
- Yale School of Medicine, Section of Endocrinology, New Haven, CT, USA
| | - Anita Huttner
- Yale School of Medicine, Department of Pathology, New Haven, CT, USA
| | - Steven Tommasini
- Yale School of Medicine, Department of Orthopaedics & Rehabilitation, New Haven, CT, USA
| | - Christine Simpson
- Yale School of Medicine, Section of Endocrinology, New Haven, CT, USA
| | - Karl Insogna
- Yale School of Medicine, Section of Endocrinology, New Haven, CT, USA.
| |
Collapse
|
2
|
Li Y, Wang X, Pan C, Yuan H, Li X, Chen Z, He H. Myoblast-derived exosomal Prrx2 attenuates osteoporosis via transcriptional regulation of lncRNA-MIR22HG to activate Hippo pathway. Mol Med 2023; 29:54. [PMID: 37081396 PMCID: PMC10116833 DOI: 10.1186/s10020-023-00649-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Sarcopenia and osteoporosis are common diseases that predominantly affect older individuals. The interaction between muscle and skeleton exerts pivotal roles in bone remodeling. This study aimed to explore the function of myoblast-derived exosomal Prrx2 in osteogenic differentiation and its potential mechanisms. METHODS Exosomes were isolated from myogenic differentiated C2C12 cells. qRT-PCR and Western blotting were used to determine target molecule expression. Osteogenic differentiation of BMSCs was evaluated by Alizarin red staining, ALP activity and levels of OCN, OPN, RUNX2, and BMP2. Dual-luciferase reporter assay, RIP, and ChIP assays were performed to verify the interaction between molecules. The nuclear translocation of YAP1 was observed by immunofluorescence staining. In vivo osteoporotic model was established by ovariectomy in mice. Bone loss was examined using HE staining. RESULTS Prrx2 expression was elevated in myogenic differentiated C2C12 cells and their exosomes. Myoblast-derived exosomal Prrx2 enhanced osteogenic differentiation of BMSCs. Delivering exosomal Prrx2 directly bond to MIR22HG promoter and promoted its transcription and expression. MIR22HG enhanced expression and nuclear translocation of YAP via sponging miR-128, thus facilitating BMSC osteogenic differentiation. Knockdown of exosomal Prrx2 suppressed osteogenic differentiation, which could be abolished by MIR22HG overexpression. Similarly, miR-128 inhibitor or YAP overexpression reversed the inhibitory effect of MIR22HG depletion or miR-128 mimics on osteogenic differentiation. Finally, myoblast-derived exosomal Prrx2 alleviated osteoporosis in mice via up-regulating MIR22HG and activating the Hippo pathway. CONCLUSION Myoblast-derived exosomal Prrx2 contributes to transcriptional activation of MIR22HG to activate YAP pathway via sponging miR-128, thereby facilitating osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yunchao Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China.
| | - Xiaoxiao Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Changyu Pan
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Hui Yuan
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Xinyi Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Zejun Chen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| | - Haoyu He
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, No. 139, RenMin Middle Road, Changsha, 410001, Hunan Province, P.R. China
| |
Collapse
|
3
|
Lin C, Yang Y, Wang Y, Jing H, Bai X, Hong Z, Zhang C, Gao H, Zhang L. Periodontal ligament fibroblasts-derived exosomes induced by PGE 2 inhibit human periodontal ligament stem cells osteogenic differentiation via activating miR-34c-5p/SATB2/ERK. Exp Cell Res 2022; 419:113318. [PMID: 35981635 DOI: 10.1016/j.yexcr.2022.113318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022]
Abstract
Several studies have confirmed that exosomes containing microRNAs (miRNAs) from the aseptic inflammatory microenvironment play an important role in bone remodeling. But the mechanism that induces changes in the osteogenic ability of periodontal ligament stem cells (PDLSCs) is still unclear. In the present study, the osteogenic function of periodontal ligament fibroblasts-derived exosomes induced by PGE2 on PDLSCs was detected by real-time PCR, alizarin red assay and alkaline phosphatase staining. High-throughput miRNAs sequencing was used to reveal that miR-34c-5p in exosomes-PGE2 was upregulated compared it in exosomes-normal. Real-time PCR and western blotting assay verified that overexpression of miR-34c-5p inhibited osteogenic differentiation, and reduced phosphorylation of ERK1/2. In addition, dual-luciferase reporter assay revealed that miR-34c-5p targeted special AT-rich sequence-binding protein 2 (SATB2). It was shown that exosomal miR-34c-5p inhibited osteogenic differentiation of PDLSCs via SATB2/ERK pathway.
Collapse
Affiliation(s)
- Chen Lin
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China; Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Yingying Yang
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China; Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Yingxue Wang
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China; Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Heng Jing
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Xinyi Bai
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Zheng Hong
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Chunxiang Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| | - Hui Gao
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| | - Linkun Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|