1
|
Weiner CP, Weiss ML, Zhou H, Syngelaki A, Nicolaides KH, Dong Y. Detection of Embryonic Trisomy 21 in the First Trimester Using Maternal Plasma Cell-Free RNA. Diagnostics (Basel) 2022; 12:1410. [PMID: 35741220 PMCID: PMC9221829 DOI: 10.3390/diagnostics12061410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Prenatal trisomy 21 (T21) screening commonly involves testing a maternal blood sample for fetal DNA aneuploidy. It is reliable but poses a cost barrier to universal screening. We hypothesized maternal plasma RNA screening might provide similar reliability but at a lower cost. Discovery experiments used plasma cell-free RNA from 20 women 11−13 weeks tested by RNA and miRNA microarrays followed by qRT-PCR. Thirty-six mRNAs and 18 small RNAs of the discovery cDNA were identified by qPCR as potential markers of embryonic T21. The second objective was validation of the RNA predictors in 998 independent pregnancies at 11−13 weeks including 50 T21. Initial analyses identified 9−15 differentially expressed RNA with modest predictive power (AUC < 0.70). The 54 RNAs were then subjected to machine learning. Eleven algorithms were trained on one partition and tested on an independent partition. The three best algorithms were identified by Kappa score and the effects of training/testing partition size and dataset class imbalance on prediction were evaluated. Six to ten RNAs predicted T21 with AUCs up to 1.00. The findings suggest that maternal plasma collected at 11−13 weeks, tested by qRT-PCR, and classified by machine learning, may accurately predict T21 for a lower cost than plasma DNA, thus opening the door to universal screening.
Collapse
Affiliation(s)
- Carl P. Weiner
- Departments of Obstetrics and Gynecology and Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA;
- Rosetta Signaling Laboratory, Phoenix, AZ 85018, USA;
| | - Mark L. Weiss
- Departments of Anatomy and Physiology & Midwest Institute of Comparative Stem Cell Biology, Kansas State University, Manhattan, KS 66506, USA;
| | - Helen Zhou
- Departments of Obstetrics and Gynecology and Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA;
| | - Argyro Syngelaki
- Fetal Medicine Research Institute, King’s College Hospital, London SE5 9RS, UK; (A.S.); (K.H.N.)
| | - Kypros H. Nicolaides
- Fetal Medicine Research Institute, King’s College Hospital, London SE5 9RS, UK; (A.S.); (K.H.N.)
| | - Yafeng Dong
- Rosetta Signaling Laboratory, Phoenix, AZ 85018, USA;
| |
Collapse
|
2
|
Wang J, Chen Z, He F, Lee T, Cai W, Chen W, Miao N, Zeng Z, Hussain G, Yang Q, Guo Q, Sun T. Single-Cell Transcriptomics of Cultured Amniotic Fluid Cells Reveals Complex Gene Expression Alterations in Human Fetuses With Trisomy 18. Front Cell Dev Biol 2022; 10:825345. [PMID: 35392164 PMCID: PMC8980718 DOI: 10.3389/fcell.2022.825345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Trisomy 18, commonly known as Edwards syndrome, is the second most common autosomal trisomy among live born neonates. Multiple tissues including cardiac, abdominal, and nervous systems are affected by an extra chromosome 18. To delineate the complexity of anomalies of trisomy 18, we analyzed cultured amniotic fluid cells from two euploid and three trisomy 18 samples using single-cell transcriptomics. We identified 6 cell groups, which function in development of major tissues such as kidney, vasculature and smooth muscle, and display significant alterations in gene expression as detected by single-cell RNA-sequencing. Moreover, we demonstrated significant gene expression changes in previously proposed trisomy 18 critical regions, and identified three new regions such as 18p11.32, 18q11 and 18q21.32, which are likely associated with trisomy 18 phenotypes. Our results indicate complexity of trisomy 18 at the gene expression level and reveal genetic reasoning of diverse phenotypes in trisomy 18 patients.
Collapse
Affiliation(s)
- Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco- Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fei He
- Genergy Bio-Technology (Shanghai) Co., Ltd, Shanghai, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, United States
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemical Biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Qingwei Yang
- Department of Neurology, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, School of Medicine and School of Public Health, Women and Children’s Hospital, Xiamen University, Xiamen, China
- *Correspondence: Qiwei Guo, ; Tao Sun,
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- *Correspondence: Qiwei Guo, ; Tao Sun,
| |
Collapse
|
3
|
Sundaravadivelu PK, Raina K, Thool M, Ray A, Joshi JM, Kaveeshwar V, Sudhagar S, Lenka N, Thummer RP. Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:151-180. [PMID: 34611861 DOI: 10.1007/5584_2021_660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.
Collapse
Affiliation(s)
- Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
4
|
Albizua I, Chopra P, Sherman SL, Gambello MJ, Warren ST. Analysis of the genomic expression profile in trisomy 18: insight into possible genes involved in the associated phenotypes. Hum Mol Genet 2020; 29:238-247. [PMID: 31813999 DOI: 10.1093/hmg/ddz279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
Trisomy 18, sometimes called Edwards syndrome, occurs in about 1 in 6000 live births and causes multiple birth defects in affected infants. The extra copy of chromosome 18 causes the altered expression of many genes and leads to severe skeletal, cardiovascular and neurological systems malformations as well as other medical problems. Due to the low rate of survival and the massive genetic imbalance, little research has been aimed at understanding the molecular consequences of trisomy 18 or considering potential therapeutic approaches. Our research is the first study to characterize whole-genome expression in fibroblast cells obtained from two patients with trisomy 18 and two matched controls, with follow-up expression confirmation studies on six independent controls. We show a detailed analysis of the most highly dysregulated genes on chromosome 18 and those genome-wide. The identified effector genes and the dysregulated downstream pathways provide hints of possible genotype-phenotype relationships to some of the most common symptoms observed in trisomy 18. We also provide a possible explanation for the sex-specific differences in survival, a unique characteristic of trisomy 18. Our analysis of genome-wide expression data moves us closer to understanding the molecular consequences of the second most common human autosomal trisomy of infants who survive to term. These insights might also translate to the understanding of the etiology of associated birth defects and medical conditions among those with trisomy 18.
Collapse
Affiliation(s)
- Igor Albizua
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| |
Collapse
|
5
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,*Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew's Center for Burns and Plastic Surgery, Chelmsford, United Kingdom.,*Both the authors contributed equally to this article
| |
Collapse
|
6
|
Nikitina TV, Kashevarova AA, Lebedev IN. Chromosomal Instability and Karyotype Correction in Human Induced Pluripotent Stem Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Tang W. Modeling the rare diseases process in dish. Intractable Rare Dis Res 2018; 7:72. [PMID: 29862146 PMCID: PMC5982626 DOI: 10.5582/irdr.2018.01048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/05/2022] Open
Abstract
For rare diseases, how to mimic the pathological progression is of importance for better understanding the molecular mechanism and identifying potential targets. Induced pluripotent stem cells (iPSCs) technology provides an ideal model to in vitro obtain the diseases-associated cells. In this issue of Intractable & Rare Diseases Research, two birth detect diseases iPS models on phenylketonuria and trisomy 18 were established, and have demonstrated great potential in the research on these rare diseases.
Collapse
Affiliation(s)
- Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|