1
|
Molina-Moya B, Lacoma A, García-Sierra N, Blanco S, Haba L, Samper S, Ruiz-Manzano J, Prat C, Arnold C, Domínguez J. PyroTyping, a novel pyrosequencing-based assay for Mycobacterium tuberculosis genotyping. Sci Rep 2017; 7:6777. [PMID: 28754991 PMCID: PMC5533701 DOI: 10.1038/s41598-017-06760-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/19/2017] [Indexed: 11/09/2022] Open
Abstract
We developed a novel method, PyroTyping, for discrimination of Mycobacterium tuberculosis isolates combining pyrosequencing and IS6110 polymorphism. A total of 100 isolates were analysed with IS6110-restriction fragment length polymorphism (RFLP), spoligotyping, mycobacterial interspersed repetitive units - variable number tandem repeats (MIRU-VNTR), and PyroTyping. PyroTyping results regarding clustering or discrimination of the isolates were highly concordant with the other typing methods performed. PyroTyping is more rapid than RFLP and presents the same discriminatory power, thus, it may be useful for taking timely decisions for tuberculosis control.
Collapse
Affiliation(s)
- B Molina-Moya
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - A Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - N García-Sierra
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain
| | - S Blanco
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - L Haba
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain
| | - S Samper
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Instituto Aragonés de Ciencias de la Salud, Zaragoza, 50009, Spain.,Fundación Instituto de Investigación Sanitaria de Aragón, Zaragoza, 50009, Spain
| | - J Ruiz-Manzano
- Servei de Pneumologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - C Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - C Arnold
- Genomic Services and Development Unit, Public Health England, 61 Colindale Avenue, London, United Kingdom
| | - J Domínguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain. .,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
2
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
3
|
Thabet S, Karboul A, Dekhil N, Mardassi H. IS6110-5'3'FP: an automated typing approach for Mycobacterium tuberculosis complex strains simultaneously targeting and resolving IS6110 5' and 3' polymorphisms. Int J Infect Dis 2014; 29:211-8. [PMID: 25447727 DOI: 10.1016/j.ijid.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/18/2014] [Accepted: 10/18/2014] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Fingerprinting of Mycobacterium tuberculosis complex strains based on the IS6110 insertion sequence would considerably gain in terms of discriminatory power and versatility if both 5' and 3' polymorphisms were simultaneously targeted, and if it benefited from automated capillary electrophoresis. In response to these requirements, we developed IS6110-5'3'FP (IS6110 5' and 3' fluorescent polymorphisms). METHODS IS6110-5'3'FP involves the construction of an M. tuberculosis genomic library in a plasmid vector using HincII endonuclease, which cuts within the IS6110 sequence. After amplification in Escherichia coli, the library is subjected to selective and simultaneous PCR amplification of IS6110 5' and 3' polymorphic fragments, using differentially labeled fluorescent primers. The resulting amplicons are then fractionated on a capillary sequencer and the signal peaks analyzed as digital data. RESULTS IS6110-5'3'FP consistently detected and resolved both 5' and 3' IS6110 polymorphic fragments (35% and 65%, respectively) with a high level of reproducibility. The method differentiated all M. tuberculosis strains, as did IS6110 restriction fragment length polymorphism (RFLP), the gold standard of IS6110-based typing. Strikingly, the potential of IS6110-5'3'FP to resolve more polymorphic fragments than IS6110 RFLP was demonstrated. CONCLUSIONS IS6110-5'3'FP demonstrated sufficient potential to be a promising automated alternative to IS6110 RFLP, amenable to high throughput analysis and inter-laboratory comparison.
Collapse
Affiliation(s)
- Sara Thabet
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia
| | - Anis Karboul
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia
| | - Neira Dekhil
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia.
| |
Collapse
|
4
|
Comparison of ligation-mediated PCR methods in differentiation of Mycobacterium tuberculosis strains. BIOMED RESEARCH INTERNATIONAL 2014; 2014:782071. [PMID: 24696162 PMCID: PMC3947874 DOI: 10.1155/2014/782071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/08/2014] [Indexed: 11/17/2022]
Abstract
Fast and inexpensive identification of epidemiological links between limited number of Mycobacterium tuberculosis strains is required to initially evaluate hospital outbreaks, laboratory crosscontaminations, and family or small community transmissions. The ligation-mediated PCR methods (LM-PCR) appear sufficiently discriminative and reproducible to be considered as a good candidate for such initial, epidemiological analysis. Here, we compared the discriminative power of the recently developed in our laboratory fast ligation amplification polymorphism (FLAP) method with fast ligation-mediated PCR (FLiP). Verification of the results was based on analyzing a set of reference strains and RFLP-IS6110 typing. The HGDI value was very similar for both LM-PCR methods and RFLP-IS6110 typing. However, only 52% of strains were correspondingly grouped by both FLiP and FLAP methods. Differentiation by FLAP method demonstrated a limited similarity to IS6110-RFLP (37,7%). As much as 78,7% of strains were grouped identically when differentiated by FLiP and IS6110-RFLP methods. The analysis differentiated 31, 35, and 36 groups when using FLAP, FLiP, and RFLP-IS6110 methods, respectively.
Collapse
|