1
|
Deku JG, Aninagyei E, Bedzina I, Nudo G, Ativi E, Mensah P, Wireko S, Osei-Tutu A, Duker E, Afeke I. Trends of Mycobacterium tuberculosis and rifampicin resistance at the Ho Teaching Hospital in Ghana. PLoS One 2024; 19:e0305161. [PMID: 38857257 PMCID: PMC11164350 DOI: 10.1371/journal.pone.0305161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Tuberculosis remains a major public health threat worldwide, causing significant morbidity and mortality, particularly in low- and middle-income countries. In recent years, efforts to combat tuberculosis have focused on strengthening healthcare systems and increasing access to diagnostics and treatment services. There is scarcity of data on the prevalence of Mycobacterium tuberculosis and rifampicin-resistant tuberculosis in the Volta region of Ghana. Therefore, the aim of this study was to determine the trends of Mycobacterium tuberculosis and rifampicin resistance in a major teaching hospital in Ghana spanning a six-year period. METHODOLOGY A retrospective cross-sectional hospital study was conducted at Ho Teaching Hospital, Ho, Ghana. Study data included archived results on tuberculosis testing using GeneXpert from 2016-2021. Archived data on tuberculosis testing were collected and entered using Microsoft Excel 2019. IBM SPSS (v26) was used for a statistical analysis of the prevalence of tuberculosis. P-value <0.05 was considered statistically significant. RESULTS The study included 5128 presumptive tuberculosis cases from 2016 to 2021, of which 552 were positive, revealing an overall prevalence of 10.76%. Males exhibited a significantly higher prevalence of tuberculosis (14.20%) compared to females (7.48%), with a male-to-female ratio of 2:1. The burden of tuberculosis varied significantly between age groups, with those aged 30-45 years and 46-60 years facing twice the risk compared to those under 15 years (p<0.001). Rainy seasons correlated with heightened tuberculosis occurrences (12.12%) compared to dry seasons (8.84%) (p = 0.008). Rifampicin-resistant tuberculosis was prevalent at 3.45%, slightly higher in women, particularly in the 45-59 age group (5.97%). In particular, tuberculosis prevalence exhibited fluctuations, peaking in 2016 (17.1%) and 2020 (11.5%), with a trough in 2019 (4.6%). CONCLUSION The overall prevalence of laboratory confirmed tuberculosis was 10.76%, and resistance to rifampicin, 3.45%, indicating high infection and possible treatment failure. Considering its infectious nature, this calls for concerted efforts to curb the spread of the infection.
Collapse
Affiliation(s)
- John Gameli Deku
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Israel Bedzina
- Reinbee Medical Laboratory and Wellness Center, Ho, Ghana
| | - Gameli Nudo
- Laboratory Department, Ho Teaching Hospital, Ho, Ghana
| | | | | | - Solomon Wireko
- Department of Laboratory Technology, Kumasi Technical University, Kumasi, Ghana
| | - Aaron Osei-Tutu
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Emmanuel Duker
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Innocent Afeke
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
2
|
Otchere ID, Asante-Poku A, Akpadja KF, Diallo AB, Sanou A, Asare P, Osei-Wusu S, Onyejepu N, Diarra B, Dagnra YA, Kehinde A, Antonio M, Yeboah-Manu D. Opinion review of drug resistant tuberculosis in West Africa: tackling the challenges for effective control. Front Public Health 2024; 12:1374703. [PMID: 38827613 PMCID: PMC11141065 DOI: 10.3389/fpubh.2024.1374703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Drug-resistant (DR) tuberculosis (TB) is a major public health concern globally, complicating TB control and management efforts. West Africa has historically faced difficulty in combating DR-TB due to limited diagnostic skills, insufficient access to excellent healthcare, and ineffective healthcare systems. This has aided in the emergence and dissemination of DR Mycobacterium tuberculosis complex (MTBC) strains in the region. In the past, DR-TB patients faced insufficient resources, fragmented efforts, and suboptimal treatment outcomes. However, current efforts to combat DR-TB in the region are promising. These efforts include strengthening diagnostic capacities, improving access to quality healthcare services, and implementing evidence-based treatment regimens for DR-TB. Additionally, many West African National TB control programs are collaborating with international partners to scale up laboratory infrastructure, enhance surveillance systems, and promote infection control measures. Moreso, novel TB drugs and regimens, such as bedaquiline and delamanid, are being introduced to improve treatment outcomes for DR-TB cases. Despite these obstacles, there is optimism for the future of DR-TB control in West Africa. Investments are being made to improve healthcare systems, expand laboratory capacity, and support TB research and innovation. West African institutions are now supporting knowledge sharing, capacity building, and resource mobilization through collaborative initiatives such as the West African Network for TB, AIDS, and Malaria (WANETAM), the West African Health Organization (WAHO), and other regional or global partners. These efforts hold promise for improved diagnostics, optimized treatment regimens, and provide better patient outcomes in the future where drug-resistant TB in WA can be effectively controlled, reducing the burden of the disease, and improving the health outcomes of affected individuals.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Adwoa Asante-Poku
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Awa Ba Diallo
- Biological Sciences Department, Faculty of Pharmacy at Cheikh Anta Diop University, Dakar, Senegal
| | - Adama Sanou
- Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Prince Asare
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nneka Onyejepu
- Microbiology Department, Center for Tuberculosis Research Laboratory, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Bassirou Diarra
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Aderemi Kehinde
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Epidemic Preparedness and Response, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Otchere ID, Morgan PA, Asare P, Osei-Wusu S, Aboagye SY, Yirenkyi SO, Musah AB, Danso EK, Tetteh-Ocloo G, Afum T, Asante-Poku A, Laryea C, Poku YA, Bonsu F, Gagneux S, Yeboah-Manu D. Analysis of drug resistance among difficult-to-treat tuberculosis patients in Ghana identifies several pre-XDR TB cases. Front Microbiol 2023; 13:1069292. [PMID: 36713197 PMCID: PMC9878308 DOI: 10.3389/fmicb.2022.1069292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Resistance to tuberculosis (TB) drugs has become a major threat to global control efforts. Early case detection and drug susceptibility profiling of the infecting bacteria are essential for appropriate case management. The objective of this study was to determine the drug susceptibility profiles of difficult-to-treat (DTT) TB patients in Ghana. Methods Sputum samples obtained from DTT-TB cases from health facilities across Ghana were processed for rapid diagnosis and detection of drug resistance using the Genotype MTBDRplus and Genotype MTBDRsl.v2 from Hain Life science. Results A total of 298 (90%) out of 331 sputum samples processed gave interpretable bands out of which 175 (58.7%) were resistant to at least one drug (ANYr); 16.8% (50/298) were isoniazid-mono-resistant (INHr), 16.8% (50/298) were rifampicin-mono-resistant (RIFr), and 25.2% (75/298) were MDR. 24 (13.7%) of the ANYr were additionally resistant to at least one second line drug: 7.4% (2 RIFr, 1 INHr, and 10 MDR samples) resistant to only FQs and 2.3% (2 RIFr, 1 INHr, and 1 MDR samples) resistant to AMG drugs kanamycin (KAN), amikacin (AMK), capreomycin (CAP), and viomycin (VIO). Additionally, there were 4.0% (5 RIFr and 2 MDR samples) resistant to both FQs and AMGs. 81 (65.6%) out of 125 INH-resistant samples including INHr and MDR had katG-mutations (MT) whereas 15 (12%) had inhApro-MT. The remaining 28 (22.4%) had both katG and inhA MT. All the 19 FQ-resistant samples were gyrA mutants whereas the 10 AMGs were rrs (3), eis (3) as well as rrs, and eis co-mutants (4). Except for the seven pre-XDR samples, no sample had eis MT. Conclusion The detection of several pre-XDR TB cases in Ghana calls for intensified drug resistance surveillance and monitoring of TB patients to, respectively, ensure early diagnosis and treatment compliance.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Portia Abena Morgan
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel Yaw Aboagye
- Institute for Environment and Sanitation Studies, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emelia Konadu Danso
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Yaw Adusi Poku
- National Tuberculosis Control Program, Ghana Health Service, Accra, Ghana
| | - Frank Bonsu
- National Tuberculosis Control Program, Ghana Health Service, Accra, Ghana
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Acquah SEK, Asare P, Danso EK, Tetteh P, Tetteh AY, Boateng D, Osei-Wusu S, Afum T, Ayamdooh YI, Akugre EA, Samad OA, Quaye L, Obiri-Danso K, Kock R, Asante-Poku A, Yeboah-Manu D. Molecular epidemiology of bovine tuberculosis in Northern Ghana identifies several uncharacterized bovine spoligotypes and suggests possible zoonotic transmission. PLoS Negl Trop Dis 2022; 16:e0010649. [PMID: 35951638 PMCID: PMC9398027 DOI: 10.1371/journal.pntd.0010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/23/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Objective
We conducted an abattoir-based cross-sectional study in the five administrative regions of Northern Ghana to determine the distribution of bovine tuberculosis (BTB) among slaughtered carcasses and identify the possibility of zoonotic transmission.
Methods
Direct smear microscopy was done on 438 tuberculosis-like lesions from selected cattle organs and cultured on Lowenstein-Jensen media. Acid-fast bacilli (AFB) isolates were confirmed as members of the Mycobacterium tuberculosis complex (MTBC) by PCR amplification of IS6110 and rpoß. Characterization and assignment into MTBC lineage and sub-lineage were done by spoligotyping, with the aid of the SITVIT2, miruvntrplus and mbovis.org databases. Spoligotype data was compared to that of clinical M. bovis isolates from the same regions to identify similarities.
Results
A total of 319/438 (72.8%) lesion homogenates were smear positive out of which, 84.6% (270/319) had microscopic grade of at least 1+ for AFB. Two hundred and sixty-five samples (265/438; 60.5%) were culture positive, of which 212 (80.0%) were MTBC. Approximately 16.7% (34/203) of the isolates with correctly defined spoligotypes were negative for IS6110 PCR but were confirmed by rpoß. Spoligotyping characterized 203 isolates as M. bovis (198, 97.5%), M. caprae (3, 1.5%), M. tuberculosis (Mtbss) lineage (L) 4 Cameroon sub-lineage, (1, 0.5%), and M. africanum (Maf) L6 (1, 0.5%). A total of 53 unique spoligotype patterns were identified across the five administrative regions (33 and 28 were identified as orphan respectively by the SITVIT2 and mbovis.org databases), with the most dominant spoligotype being SIT1037/ SB0944 (77/203, 37.93%). Analysis of the bovine and human M. bovis isolates showed 75% (3/4) human M. bovis isolates sharing the same spoligotype pattern with the bovine isolates.
Conclusion
Our study identified that approximately 29% of M. bovis strains causing BTB in Northern Ghana are caused by uncharacterized spoligotypes. Our findings suggest possible zoonotic transmission and highlight the need for BTB disease control in Northern Ghana.
Collapse
Affiliation(s)
- Samuel Ekuban Kobina Acquah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Clinical Microbiology, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail: (PA); (DYM)
| | - Emelia Konadu Danso
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Phillip Tetteh
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Amanda Yaa Tetteh
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Daniel Boateng
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Eric Agongo Akugre
- Veterinary Services Directorate, Ministry of Food and Agriculture, Bolgatanga, Ghana
| | - Omar Abdul Samad
- Veterinary Services Directorate, Ministry of Food and Agriculture, Wa, Ghana
| | - Lawrence Quaye
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Kock
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail: (PA); (DYM)
| |
Collapse
|
5
|
Systematic Evaluation of Line Probe Assays for the diagnosis of Tuberculosis and Drug-resistant Tuberculosis. Clin Chim Acta 2022; 533:183-218. [DOI: 10.1016/j.cca.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022]
|
6
|
Balamurugan M, Banerjee R, Kasibhatla SM, Achalere A, Joshi R. Understanding the Genetic Diversity of Mycobacterium africanum Using Phylogenetics and Population Genomics Approaches. Front Genet 2022; 13:800083. [PMID: 35495132 PMCID: PMC9043288 DOI: 10.3389/fgene.2022.800083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A total of two lineages of Mycobacterium tuberculosis var. africanum (Maf), L5 and L6, which are members of the Mycobacterium tuberculosis complex (MTBC), are responsible for causing tuberculosis in West Africa. Regions of difference (RDs) are usually used for delineation of MTBC. With increased data availability, single nucleotide polymorphisms (SNPs) promise to provide better resolution. Publicly available 380 Maf samples were analyzed for identification of “core-cluster-specific-SNPs,” while additional 270 samples were used for validation. RD-based methods were used for lineage-assignment, wherein 31 samples remained unidentified. The genetic diversity of Maf was estimated based on genome-wide SNPs using phylogeny and population genomics approaches. Lineage-based clustering (L5 and L6) was observed in the whole genome phylogeny with distinct sub-clusters. Population stratification using both model-based and de novo approaches supported the same observations. L6 was further delineated into three sub-lineages (L6.1–L6.3), whereas L5 was grouped as L5.1 and L5.2 based on the occurrence of RD711. L5.1 and L5.2 were further divided into two (L5.1.1 and L5.1.2) and four (L5.2.1–L5.2.4) sub-clusters, respectively. Unassigned samples could be assigned to definite lineages/sub-lineages based on clustering observed in phylogeny along with high-confidence posterior membership scores obtained during population stratification. Based on the (sub)-clusters delineated, “core-cluster-specific-SNPs” were derived. Synonymous SNPs (137 in L5 and 128 in L6) were identified as biomarkers and used for validation. Few of the cluster-specific missense variants in L5 and L6 belong to the central carbohydrate metabolism pathway which include His6Tyr (Rv0946c), Glu255Ala (Rv1131), Ala309Gly (Rv2454c), Val425Ala and Ser112Ala (Rv1127c), Gly198Ala (Rv3293) and Ile137Val (Rv0363c), Thr421Ala (Rv0896), Arg442His (Rv1248c), Thr218Ile (Rv1122), and Ser381Leu (Rv1449c), hinting at the differential growth attenuation. Genes harboring multiple (sub)-lineage-specific “core-cluster” SNPs such as Lys117Asn, Val447Met, and Ala455Val (Rv0066c; icd2) present across L6, L6.1, and L5, respectively, hinting at the association of these SNPs with selective advantage or host-adaptation. Cluster-specific SNPs serve as additional markers along with RD-regions for Maf delineation. The identified SNPs have the potential to provide insights into the genotype–phenotype correlation and clues for endemicity of Maf in the African population.
Collapse
|
7
|
Müller SJ, Meraba RL, Dlamini GS, Mapiye DS. First-line drug resistance profiling of Mycobacterium tuberculosis: a machine learning approach. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:891-899. [PMID: 35309001 PMCID: PMC8861754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The persistence and emergence of new multi-drug resistant Mycobacterium tuberculosis (M. tb) strains continues to advance the devastating tuberculosis (TB) epidemic. Robust systems are needed to accurately and rapidly perform drug-resistance profiling, and machine learning (ML) methods combined with genomic sequence data may provide novel insights into drug-resistance mechanisms. Using 372 M. tb isolates, the combined utility of ML and bioinformatics to perform drug-resistance profiling is demonstrated. SNPs, InDels, and dinucleotide frequencies are explored as input features for three ML models, namely Decision Trees, Random Forest, and the eXtreme Gradient Boosted model. Using SNPs and InDels, all three models performed equally well yielding a 99% accuracy, 97% recall, and 99% F1-score. Using dinucleotide frequencies, the XGBoost algorithm was superior with a 97% accuracy, 94% recall and 97% F1-score. This study validates the use of variants and presents dinucleotide features as another effective feature encoding method for ML-based phenotype classification.
Collapse
|
8
|
Molecular epidemiology and drug susceptibility profiles of Mycobacterium tuberculosis complex isolates from Northern Ghana. Int J Infect Dis 2021; 109:294-303. [PMID: 34273514 DOI: 10.1016/j.ijid.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE We conducted a cross-sectional study in the five administrative regions of Northern Ghana to determine the diversity of Mycobacterium tuberculosis complex (MTBC) sub/lineages and their susceptibility to isoniazid (INH) and rifampicin (RIF). METHODS Sputum specimens were collected and cultured from 566 pulmonary tuberculosis patients reporting to 17 health facilities from 2015 to 2019. Mycobacterial isolates obtained from solid cultures were confirmed as members of the MTBC by PCR amplification of IS6110 and rpoß and assigned lineages and sub-lineages using spoligotyping. RESULTS Of 294 mycobacterial isolates recovered, MTBC species identified were: M. tuberculosis sensu stricto (Mtbss) 241 (82.0%), M. africanum 41 (13.9%) and M. bovis four (1.4%) with eight (2.7%) unidentified. The human-adapted lineages (L) identified (N=279) were L1 (8/279, 2.9%), L2 (15/279, 5.4%), L3 (7/279, 2.5%), L4 (208/279, 74.5%), L5 (13/279, 4.7%) and L6 (28/279, 10.0%) with three unidentified lineages. Among the 208 L4, the dominant sub-lineages in the region were the Cameroon 120/208 (57.7%) and Ghana 50/208 (24.0%). We found 4.4% (13/294) and 0.7% (2/294) of the patients infected with MTBC isolates resistant to INH only and RIF only, respectively, with 2.4% (7/294) being infected with MDR strains. Whereas L6 was associated with the elderly, we identified that the Ghana sub-lineage of L4 was associated with both INH and MDR (p<0.05), making them important TB pathogens in Northern Ghana and a growing public health concern.
Collapse
|
9
|
Sylverken AA, Kwarteng A, Twumasi-Ankrah S, Owusu M, Arthur RA, Dumevi RM, Adu-Amoah L, Addofoh N, Okyere PB, Dzata F, Bonsu F, Adusi-Poku Y, Kranzer K, Siroka A, van Gemert W, Dean A, Owusu-Dabo E. The burden of drug resistance tuberculosis in Ghana; results of the First National Survey. PLoS One 2021; 16:e0252819. [PMID: 34111159 PMCID: PMC8191906 DOI: 10.1371/journal.pone.0252819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
Resistance to Tuberculosis drugs has become a major threat to the control of tuberculosis (TB) globally. We conducted the first nation-wide drug resistance survey to investigate the level and pattern of resistance to first-line TB drugs among newly and previously treated sputum smear-positive TB cases. We also evaluated associations between potential risk factors and TB drug resistance. Using the World Health Organization (WHO) guidelines on conducting national TB surveys, we selected study participants from 33 health facilities from across the country, grouped into 29 clusters, and included them into the survey. Between April 2016 and June 2017, a total of 927 patients (859 new and 68 previously treated) were enrolled in the survey. Mycobacterium tuberculosis complex (MTBC) isolates were successfully cultured from 598 (65.5%) patient samples and underwent DST, 550 from newly diagnosed and 48 from previously treated patients. The proportion of patients who showed resistance to any of the TB drugs tested was 25.2% (95% CI; 21.8–28.9). The most frequent resistance was to Streptomycin (STR) (12.3%), followed by Isoniazid (INH) (10.4%), with Rifampicin (RIF), showing the least resistance of 2.4%. Resistance to Isoniazid and Rifampicin (multi-drug resistance) was found in 19 (3.2%; 95% CI: 1.9–4.9) isolates. Prevalence of multidrug resistance was 7 (1.3%; 95% CI: 0.5–2.6) among newly diagnosed and 12 (25.0%; 95% CI: 13.6–39.6) among previously treated patients. At both univariate and multivariate analysis, MDR-TB was positively associated with previous history of TB treatment (OR = 5.09, 95% CI: 1.75–14.75, p = 0.003); (OR = 5.41, 95% CI: 1.69–17.30, p = 0.004). The higher levels of MDR-TB and overall resistance to any TB drug among previously treated patients raises concerns about adherence to treatment. This calls for strengthening existing TB programme measures to ensure a system for adequately testing and monitoring TB drug resistance.
Collapse
Affiliation(s)
- Augustina Angelina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- * E-mail:
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sampson Twumasi-Ankrah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Statistics and Actuarial Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Owusu
- Department of Medical Laboratory Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rejoice Agyeiwaa Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rexford Mawunyo Dumevi
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Louis Adu-Amoah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nicholas Addofoh
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Portia Boakye Okyere
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francisca Dzata
- National Tuberculosis Control Programme, Ghana Health Service, Accra, Ghana
| | - Frank Bonsu
- National Tuberculosis Control Programme, Ghana Health Service, Accra, Ghana
| | - Yaw Adusi-Poku
- National Tuberculosis Control Programme, Ghana Health Service, Accra, Ghana
| | | | - Andrew Siroka
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Wayne van Gemert
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Anna Dean
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Ellis Owusu-Dabo
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Global and International Health, School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
10
|
Antibiotic resistance of Mycobacterium tuberculosis complex in Africa: A systematic review of current reports of molecular epidemiology, mechanisms and diagnostics. J Infect 2019; 79:550-571. [DOI: 10.1016/j.jinf.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022]
|
11
|
Jian J, Yang X, Yang J, Chen L. Evaluation of the GenoType MTBDR plus and MTBDR sl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist 2018; 11:1627-1634. [PMID: 30319279 PMCID: PMC6171507 DOI: 10.2147/idr.s176609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The incidence of tuberculosis (TB), especially multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), continues to increase alarmingly worldwide. Molecular line probe assays (LPAs) are endorsed by the World Health Organization for the fast detection of MDR-TB and XDR-TB. The aim of this study was to evaluate the performance of LPAs in China. Methods We analyzed MDR-TB and XDR-TB in 96 isolates from Beijing by using culture-based drug susceptibility testing (DST) and LPAs to compare the detection rate of the two methods. Results Compared to phenotypic DST, the GenoType® MTBDRplus and MTBDRsl, respectively, showed a sensitivity of 98.7% and a specificity of 88.9% for detection of rifampicin resistance, 82.1% and 94.4% for isoniazid, 89.7% and 94.4% for levofloxacin, 60.0% and 98.7% for amikacin/capreomycin, and 57.5% and 98.2% for ethambutol. The sensitivity and specificity of LPAs, respectively, were 80.8% and 100% for MDR-TB and 50.0% and 97.6% for XDR-TB. Mutations in codon S531L of the rpoB gene and S315T1 of the KatG gene were dominated in MDR-TB strains. The most frequently observed mutations were in codon A90V of the gyrA gene, A1401G of the rrs gene, and M306V of the embB gene, according to the MTBDRsl results. Conclusion Our study showed that, in combination with phenotypic DST, application of the LPAs might be an efficient and reliable supplementary DST assay for rapid susceptibility screening of MDR-TB and XDR-TB. Using LPAs in countries with high MDR/XDR burden allows for appropriate and timely treatment, which will reduce transmission rates and morbidity, and improve treatment outcomes in patients.
Collapse
Affiliation(s)
- Jiyong Jian
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China, .,Peking University Ninth School of Clinical Medicine, Beijing, China, .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China,
| | - Xinyu Yang
- Central Laboratory, Beijing Research Institute for Tuberculosis Control, Beijing, China
| | - Jun Yang
- Department of Sterilized supplying, PLA 306 Hospital, Beijing, China
| | - Liang Chen
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China, .,Peking University Ninth School of Clinical Medicine, Beijing, China, .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China,
| |
Collapse
|
12
|
Prevalence of mutations in genes associated with isoniazid resistance in Mycobacterium tuberculosis isolates from re-treated smear-positive pulmonary tuberculosis patients: A meta-analysis. J Glob Antimicrob Resist 2018; 14:253-259. [DOI: 10.1016/j.jgar.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/09/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022] Open
|
13
|
Otchere ID, Asante-Poku A, Osei-Wusu S, Aboagye SY, Yeboah-Manu D. Isolation and characterization of nontuberculous mycobacteria from patients with pulmonary tuberculosis in Ghana. Int J Mycobacteriol 2018; 6:70-75. [PMID: 28317808 DOI: 10.4103/2212-5531.201895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE/BACKGROUND Nontuberculous mycobacterial (NTM) species are assuming public health importance in pulmonary diseases; they are increasingly being isolated, and importantly, most NTMs do not respond to routine tuberculosis (TB) drugs. This study aimed to identify NTMs isolated from pulmonary TB cases and also determine their susceptibility to streptomycin (STR), isoniazid (INH), and rifampicin (RIF). METHODS A total of 1755 mycobacterial isolates, obtained between August 2012 and July 2014, from 2036 smear-positive pulmonary cases were identified using polymerase chain reaction amplification of IS6110, and hsp65 gene sequencing analysis. Drug susceptibility testing (DST) was then performed for the identified NTMs against STR, INH, and RIF using microplate Alamar blue assay. The results were analyzed against patients' biodata for statistical associations. RESULTS Of the 1755 analyzed isolates, we identified 43 (2.5%) NTMs, which included 18 (41.9%) Mycobacterium intracellulare, 13 (30.2%) Mycobacterium avium subs. paratuberculosis, 5 (11.3%) Mycobacterium abscessus, 3 (7.0%) each of Mycobacterium mucogenicum and Mycobacterium colombiense, and 1 (2.3%) Mycobacterium simiae. Patients infected with NTMs (52.0%) were more likely to be human immunodeficiency virus-positive (P = 0.001, odds ratio = 6.6, 95% confidence interval = 2.7-16.2) than those infected with M. tuberculosis complex (5.8%). All the 43 (100%) NTMs were resistant to INH, whereas 32 (74%) and 19 (44%) were resistant to RIF and STR, respectively. Furthermore, 16 (37.2%) NTMs were resistant to all three drugs, 20 were resistant to INH and RIF, and 3 were resistant to STR and INH. All the M. abscessus isolates were resistant to all the three drugs, whereas all the M. avium isolates were resistant to INH and RIF, but only three were resistant to STR. Among the M. intracellulare isolates, 8, 18, and 15 isolates were resistant to STR, INH, and RIF, respectively. CONCLUSION The observed high-resistance level to INH and RIF supports the need for rapid species identification and DST of nonresponding TB cases before retreatment.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of , Accra, Ghana
| | - Adwoa Asante-Poku
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of , Accra, Ghana
| | - Stephen Osei-Wusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of , Accra, Ghana
| | - Samuel Yaw Aboagye
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of , Accra, Ghana
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of , Accra, Ghana
| |
Collapse
|
14
|
Liu Q, Li GL, Chen C, Wang JM, Martinez L, Lu W, Zhu LM. Diagnostic Performance of the GenoType MTBDR plus and MTBDR sl Assays to Identify Tuberculosis Drug Resistance in Eastern China. Chin Med J (Engl) 2018. [PMID: 28639565 PMCID: PMC5494913 DOI: 10.4103/0366-6999.208248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: The WHO recently has recommended the GenoType MTBDRplus version 1.0 and MTBDRsl version 1.0 assays for widespread use in countries endemic with drug-resistant tuberculosis. Despite this, these assays have rarely been evaluated in China, where the burden of drug-resistant tuberculosis is among the highest globally. Methods: Mycobacterium tuberculosis clinical isolates were obtained between January 2008 and December 2008. Isolates were tested for drug resistance against rifampicin (RFP) and isoniazid (INH) using the GenoType MTBDRplus assay and drug resistance against ethambutol (EMB), ofloxacin (OFX), and kanamycin (KM) using the Genotype MTBDRsl assay. These results were compared with conventional drug-susceptibility testing (DST). Results: Readable results were obtained from 235 strains by GenoType MTBDRplus assay. Compared to DST, the sensitivity of GenoType MTBDRplus assay to detect RFP, INH, and multidrug resistance was 97.7%, 69.9%, and 69.8%, respectively, whereas the specificity for detecting RFP, INH, and multidrug resistance was 66.7%, 69.2%, and 76.8%, respectively. The sensitivity and specificity of the GenoType MTBDRsl assay were 90.9% and 95.2% for OFX, 77.8% and 99.5% for KM, 63.7% and 86.4% for EMB, respectively. Mutations in codon S531L of the rpoB gene and codon S315T1 of KatG gene were dominated in multidrug-resistant tuberculosis (MDR-TB) strains. Conclusions: In combination with DST, application of the GenoType MTBDRplus and MTBDRsl assays may be a useful supplementary tool to allow a rapid and safe diagnosis of multidrug resistance and extensively drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu 210009, China
| | - Guo-Li Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu 210009, China
| | - Cheng Chen
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu 210009, China
| | - Jian-Ming Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Leonardo Martinez
- Department of Epidemiology and Biostatistics, University of Georgia School of Public Health; Center for Global Health, University of Georgia School of Public Health, Athens 21401, Georgia, USA
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu 210009, China
| | - Li-Mei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu 210009, China
| |
Collapse
|
15
|
de Almeida AL, Scodro RBDL, de Carvalho HC, Costacurta GF, Baldin VP, Santos NCS, Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Siqueira VLD, Caleffi-Ferracioli KR, Shibata FK, Sprada A, Cardoso RF. RD RioMycobacterium tuberculosis lineage in the Brazil/Paraguay/Argentina triple border. Tuberculosis (Edinb) 2018; 110:68-78. [PMID: 29779776 DOI: 10.1016/j.tube.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The high tuberculosis (TB) incidence rates, the closeness of the cities and the high migration flux on the Brazil/Paraguay/Argentina border deserves an in-depth study, using Mycobacterial Interspersed Repetitive Unit (MIRU) and Spoligotyping genetic markers to explore the impact of the Mycobacterium tuberculosis RDRio lineage on disease transmission and resistance to anti-TB drugs in this setting. Although without the totality of M. tuberculosis isolates causing TB in this studied setting, a number of 97 isolates obtained from sputa samples culture of patients with confirmed TB, from 2013 to 2015, were submitted to 24 loci MIRU, Spoligotyping, detection of RDRio lineage and detection of mutation related to isoniazid and rifampicin resistance by MTBDRplus/DNA STRIP. In this sample, it was observed high clonal variability of circulating M. tuberculosis isolates causing TB in Brazilian cities bordering Paraguay and Argentina. The percentage of RDRio lineage causing TB in this setting was 15.46%, and lower than the detected in different areas of Brazil. According to 24 loci MIRU, the major MIRU International Type (MIT) related with RDRio lineage were MIT 26, MIT 738, MIT 601 with four, two and one isolates, respectively. Eight isolates with RDRio marker were classified as orphans. The mainly Spoligofamily related with RDRio lineage was LAM1 and LAM9 and no relationship between RDRio lineage and resistance in M. tuberculosis isolates circulating in this setting could be established. This work is pioneer in studying the dynamics of RDRio lineage transmission on the Brazil/Paraguay/Argentina border and deserves further studies to analyze the real contribution of the RDRio lineage in outbreaks and the risk of significant development of MDR-TB in the setting studied.
Collapse
Affiliation(s)
- Aryadne Larissa de Almeida
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil.
| | - Regiane Bertin de Lima Scodro
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, PR, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, PR, Brazil.
| | - Hayalla Corrêa de Carvalho
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil.
| | | | - Vanessa Pietrowski Baldin
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil.
| | | | | | | | - Vera Lucia Dias Siqueira
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil; Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, PR, Brazil.
| | | | | | | | - Rosilene Fressatti Cardoso
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil; Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, PR, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, PR, Brazil.
| |
Collapse
|
16
|
Osei-Wusu S, Amo Omari M, Asante-Poku A, Darko Otchere I, Asare P, Forson A, Otu J, Antonio M, Yeboah-Manu D. Second-line anti-tuberculosis drug resistance testing in Ghana identifies the first extensively drug-resistant tuberculosis case. Infect Drug Resist 2018; 11:239-246. [PMID: 29503573 PMCID: PMC5825993 DOI: 10.2147/idr.s152720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Drug resistance surveillance is crucial for tuberculosis (TB) control. Therefore, our goal was to determine the prevalence of second-line anti-TB drug resistance among diverse primary drug-resistant Mycobacterium tuberculosis complex (MTBC) isolates in Ghana. MATERIALS AND METHODS One hundred and seventeen MTBC isolates with varying first-line drug resistance were analyzed. Additional resistance to second-line anti-TB drugs (streptomycin [STR], amikacin [AMK] and moxifloxacin [MOX]) was profiled using the Etest and GenoType MTBDRsl version 2.0. Genes associated with resistance to AMK and MOX (gyrA, gyrB, eis, rrs, tap, whiB7 and tlyA) were then analyzed for mutation. RESULTS Thirty-seven (31.9%) isolates had minimum inhibitory concentration (MIC) values ≥2 µg/mL against STR while 12 (10.3%) isolates had MIC values ≥1 µg/mL for AMK. Only one multidrug-resistant (MDR) isolate (Isolate ID: TB/Nm 919) had an MIC value of ≥0.125 µg/mL for MOX (MIC = 3 µg/mL). This isolate also had the highest MIC value for AMK (MIC = 16 µg/mL) and was confirmed as resistant to AMK and MOX by the line probe assay GenoType MTBDRsl version 2.0. Mutations associated with the resistance were: gyrA (G88C) and rrs (A514C and A1401G). CONCLUSION Our findings suggest the need to include routine second-line anti-TB drug susceptibility testing of MDR/rifampicin-resistant isolates in our diagnostic algorithm.
Collapse
Affiliation(s)
- Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Michael Amo Omari
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Jacob Otu
- Medical Research Council Unit, Fajara, The Gambia
| | | | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
17
|
Addo KK, Addo SO, Mensah GI, Mosi L, Bonsu FA. Genotyping and drug susceptibility testing of mycobacterial isolates from population-based tuberculosis prevalence survey in Ghana. BMC Infect Dis 2017; 17:743. [PMID: 29197331 PMCID: PMC5712140 DOI: 10.1186/s12879-017-2853-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022] Open
Abstract
Background Mycobacterium tuberculosis complex (MTBC) and Non-tuberculosis Mycobacterium (NTM) infections differ clinically, making rapid identification and drug susceptibility testing (DST) very critical for infection control and drug therapy. This study aims to use World Health Organization (WHO) approved line probe assay (LPA) to differentiate mycobacterial isolates obtained from tuberculosis (TB) prevalence survey in Ghana and to determine their drug resistance patterns. Methods A retrospective study was conducted whereby a total of 361 mycobacterial isolates were differentiated and their drug resistance patterns determined using GenoType Mycobacterium Assays: MTBC and CM/AS for differentiating MTBC and NTM as well MTBDRplus and NTM-DR for DST of MTBC and NTM respectively. Results Out of 361 isolates, 165 (45.7%) MTBC and 120 (33.2%) NTM (made up of 14 different species) were identified to the species levels whiles 76 (21.1%) could not be completely identified. The MTBC comprised 161 (97.6%) Mycobacterium tuberculosis and 4 (2.4%) Mycobacterium africanum. Isoniazid and rifampicin monoresistant MTBC isolates were 18/165 (10.9%) and 2/165(1.2%) respectively whiles 11/165 (6.7%) were resistant to both drugs. Majority 42/120 (35%) of NTM were M. fortuitum. DST of 28 M. avium complex and 8 M. abscessus complex species revealed that all were susceptible to macrolides (clarithromycin, azithromycin) and aminoglycosides (kanamycin, amikacin, and gentamicin). Conclusion Our research signifies an important contribution to TB control in terms of knowledge of the types of mycobacterium species circulating and their drug resistance patterns in Ghana. Electronic supplementary material The online version of this article (10.1186/s12879-017-2853-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kennedy Kwasi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana.
| | - Samuel Ofori Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana.,West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Gloria Ivy Mensah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Lydia Mosi
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Frank Adae Bonsu
- National Tuberculosis Programme, Ghana Health Service, Accra, Ghana
| |
Collapse
|
18
|
Performance of GenoType ® MTBDRplus assay in the diagnosis of drug-resistant tuberculosis in Tangier, Morocco. J Glob Antimicrob Resist 2017; 12:63-67. [PMID: 28899805 DOI: 10.1016/j.jgar.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Accepted: 09/02/2017] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES In Morocco, tuberculosis (TB) is a major public health problem with high morbidity and mortality. The main problem faced by the national TB programme is the high rate of drug-resistant (DR), particularly multi-drug resistant (MDR) strains. Diagnosis of DR-TB is mainly performed by conventional techniques that are time consuming with limited efficacy. In 2014, the GenoType® MTBDRplus assay was introduced in Morocco for drug susceptibility testing (DST). In this regard, the present study was planned to assess the diagnostic accuracy of the GenoType® MTBDRplus assay. METHODS A total of 70 samples from suspected TB cases in Tangier (Morocco) were analysed by conventional DST and GenoType® MTBDRplus assay. RESULTS Among the 70 samples, 37.1% were MDR, whereas monoresistance to isoniazid (INH) and rifampicin (RIF) was detected in 186% and 17.1% of strains, respectively, by DST. Using the GenoType® MTBDRplus approach, 12 isolates (17.1%) were identified as INH monoresistant, 9 (12.9%) as RIF monoresistant and 26 (37.1%) as MDR. rpoB531 and katG315 mutations were the most common mutations associated with resistance to RIF and INH, respectively. Significantly, all phenotypically MDR strains were also MDR by GenoType® MTBDRplus. The sensitivity of GenoType® MTBDRplus was 92.1% for RIF resistance and 97.4% for INH resistance, whereas the specificity was 100% for the two tested drugs. CONCLUSIONS GenoType® MTBDRplus assay is a rapid, reliable and accurate tool for the detection of DR-TB in clinical specimens. Its routine use will be of a great interest to prevent the dissemination of DR-TB in the community.
Collapse
|
19
|
Santos PFGD, Costa ERD, Ramalho DM, Rossetti ML, Barcellos RB, Nunes LDS, Esteves LS, Rodenbusch R, Anthony RM, Bergval I, Sengstake S, Viveiros M, Kritski A, Oliveira MM. Detection of tuberculosis drug resistance: a comparison by Mycobacterium tuberculosis MLPA assay versus Genotype®MTBDRplus. Mem Inst Oswaldo Cruz 2017; 112:396-403. [PMID: 28591399 PMCID: PMC5446228 DOI: 10.1590/0074-02760160376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND To cope with the emergence of multidrug-resistant tuberculosis (MDR-TB), new molecular methods that can routinely be used to screen for a wide range of drug resistance related genetic markers in the Mycobacterium tuberculosis genome are urgently needed. OBJECTIVE To evaluate the performance of multiplex ligaton-dependent probe amplification (MLPA) against Genotype® MTBDRplus to detect resistance to isoniazid (INHr) and rifampicin (RIFr). METHOD 96 culture isolates characterised for identification, drug susceptibility testing (DST) and sequencing of rpoB, katG, and inhA genes were evaluated by the MLPA and Genotype®MTBDRplus assays. RESULTS With sequencing as a reference standard, sensitivity (SE) to detect INHr was 92.8% and 85.7%, and specificity (SP) was 100% and 97.5%, for MLPA and Genotype®MTBDRplus, respectively. In relation to RIFr, SE was 87.5% and 100%, and SP was 100% and 98.8%, respectively. Kappa value was identical between Genotype®MTBDRplus and MLPA compared with the standard DST and sequencing for detection of INHr [0.83 (0.75-0.91)] and RIFr [0.93 (0.88-0.98)]. CONCLUSION Compared to Genotype®MTBDRplus, MLPA showed similar sensitivity to detect INH and RIF resistance. The results obtained by the MLPA and Genotype®MTBDRplus assays indicate that both molecular tests can be used for the rapid detection of drug-resistant TB with high accuracy. MLPA has the added value of providing information on the circulating M. tuberculosis lineages.
Collapse
Affiliation(s)
- Paula Fernanda Gonçalves Dos Santos
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil
| | - Elis Regina Dalla Costa
- Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil.,Rede Brasileira de Pesquisa em Tuberculose, Rio de Janeiro, RJ, Brasil
| | - Daniela M Ramalho
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil
| | - Maria Lucia Rossetti
- Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil.,Universidade Luterana do Brasil, Porto Alegre, RS, Brasil
| | - Regina Bones Barcellos
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil.,Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil.,Rede Brasileira de Pesquisa em Tuberculose, Rio de Janeiro, RJ, Brasil
| | - Luciana de Souza Nunes
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Leonardo Souza Esteves
- Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Rodrigo Rodenbusch
- Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Richard M Anthony
- Royal Tropical Institute, KIT Biomedical Research, Amsterdam, The Netherlands
| | - Indra Bergval
- Royal Tropical Institute, KIT Biomedical Research, Amsterdam, The Netherlands
| | - Sarah Sengstake
- Royal Tropical Institute, KIT Biomedical Research, Amsterdam, The Netherlands
| | - Miguel Viveiros
- Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Lisboa, Portugal
| | - Afrânio Kritski
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil.,Rede Brasileira de Pesquisa em Tuberculose, Rio de Janeiro, RJ, Brasil
| | - Martha M Oliveira
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa Acadêmico de Tuberculose, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil.,Rede Brasileira de Pesquisa em Tuberculose, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
20
|
Nathavitharana RR, Cudahy PGT, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J 2017; 49:49/1/1601075. [PMID: 28100546 PMCID: PMC5898952 DOI: 10.1183/13993003.01075-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022]
Abstract
Only 25% of multidrug-resistant tuberculosis (MDR-TB) cases are currently diagnosed. Line probe assays (LPAs) enable rapid drug-susceptibility testing for rifampicin (RIF) and isoniazid (INH) resistance and Mycobacterium tuberculosis detection. Genotype MTBDRplusV1 was WHO-endorsed in 2008 but newer LPAs have since been developed. This systematic review evaluated three LPAs: Hain Genotype MTBDRplusV1, MTBDRplusV2 and Nipro NTM+MDRTB. Study quality was assessed with QUADAS-2. Bivariate random-effects meta-analyses were performed for direct and indirect testing. Results for RIF and INH resistance were compared to phenotypic and composite (incorporating sequencing) reference standards. M. tuberculosis detection results were compared to culture. 74 unique studies were included. For RIF resistance (21 225 samples), pooled sensitivity and specificity (with 95% confidence intervals) were 96.7% (95.6–97.5%) and 98.8% (98.2–99.2%). For INH resistance (20 954 samples), pooled sensitivity and specificity were 90.2% (88.2–91.9%) and 99.2% (98.7–99.5%). Results were similar for direct and indirect testing and across LPAs. Using a composite reference standard, specificity increased marginally. For M. tuberculosis detection (3451 samples), pooled sensitivity was 94% (89.4–99.4%) for smear-positive specimens and 44% (20.2–71.7%) for smear-negative specimens. In patients with pulmonary TB, LPAs have high sensitivity and specificity for RIF resistance and high specificity and good sensitivity for INH resistance. This meta-analysis provides evidence for policy and practice. Line probe assays have high accuracy for detection of RIF resistance and INH resistancehttp://ow.ly/USX5305tqFV
Collapse
Affiliation(s)
| | - Patrick G T Cudahy
- Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | | | - Karen R Steingart
- Cochrane Infectious Diseases Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Claudia M Denkinger
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA.,FIND, Geneva, Switzerland
| |
Collapse
|
21
|
Otchere ID, Asante-Poku A, Osei-Wusu S, Baddoo A, Sarpong E, Ganiyu AH, Aboagye SY, Forson A, Bonsu F, Yahayah AI, Koram K, Gagneux S, Yeboah-Manu D. Detection and characterization of drug-resistant conferring genes in Mycobacterium tuberculosis complex strains: A prospective study in two distant regions of Ghana. Tuberculosis (Edinb) 2016; 99:147-154. [PMID: 27450017 PMCID: PMC4978697 DOI: 10.1016/j.tube.2016.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 11/29/2022]
Abstract
We spoligotyped and screened 1490 clinical Mycobacterium tuberculosis complex strains from Northern and Greater Accra regions of Ghana against INH and RIF using the microplate alamar blue phenotypic assay. Specific drug resistance associated genetic elements of drug resistant strains were analyzed for mutations. A total of 111 (7.5%), 10 (0.7%) and 40 (2.6%) were mono-resistant to INH, RIF, and MDR, respectively. We found the Ghana spoligotype to be associated with drug resistance (INH: 22.1%; p = 0.0000, RIF: 6.2%; p = 0.0103, MDR: 4.6%; p = 0.0240) as compared to the Cameroon spoligotype (INH: 6.7%, RIF: 2.4%, MDR: 1.6%). The propensity for an isolate to harbour katG S315T mutation was higher in M. tuberculosis (75.8%) than Mycobacterium africanum (51.7%) (p = 0.0000) whereas the opposite was true for inhApro mutations; MAF (48.3%) compared to MTBSS (26.7%) (p = 0.0419). We identified possible novel compensatory INH resistance mutations in inhA (G204D) and ahpCpro (-88G/A and -142G/A) and a novel ndh mutation K32R. We detected two possible rpoC mutations (G332R and V483G), which occurred independently with rpoB S450L, respectively. The study provides the first evidence that associate the Ghana spoligotype with DR-TB and calls for further genome analyses for proper classification of this spoligotype and to explore for fitness implications and mechanisms underlying this observation.
Collapse
Affiliation(s)
- I D Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - A Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - S Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - A Baddoo
- Chest Clinic, Korle-BU Teaching Hospital, Accra, Ghana
| | - E Sarpong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - A H Ganiyu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - S Y Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - A Forson
- Chest Clinic, Korle-BU Teaching Hospital, Accra, Ghana
| | - F Bonsu
- Ghana Health Service, Ministry of Health, Accra, Ghana
| | - A I Yahayah
- Chest Department, Tamale Teaching Hospital, Tamale, Ghana
| | - K Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - S Gagneux
- Swiss TPH, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - D Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|