1
|
Gulleen EA, Holte S, Zhang Y, Mbarusha I, Mubiru D, Pedun B, Keng M, Heysell SK, Omoding A, Moore CC, Phipps W. Etiology of Fever and Associated Outcomes Among Adults Receiving Chemotherapy for the Treatment of Solid Tumors in Uganda. Open Forum Infect Dis 2023; 10:ofad508. [PMID: 37953812 PMCID: PMC10633783 DOI: 10.1093/ofid/ofad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background Little is known about the microbiology and outcomes of chemotherapy-associated febrile illness among patients in sub-Saharan Africa. Understanding the microbiology of febrile illness could improve antibiotic selection and infection-related outcomes. Methods From September 2019 through June 2022, we prospectively enrolled adult inpatients at the Uganda Cancer Institute who had solid tumors and developed fever within 30 days of receiving chemotherapy. Evaluation included blood cultures, malaria rapid diagnostic tests, and urinary lipoarabinomannan testing for tuberculosis. Serum cryptococcal antigen was evaluated in participants with human immunodeficiency virus (HIV). The primary outcome was the mortality rate 40 days after fever onset, which we estimated using Cox proportional hazards models. Results A total of 104 febrile episodes occurred among 99 participants. Thirty febrile episodes (29%) had ≥1 positive microbiologic result. The most frequently identified causes of infection were tuberculosis (19%) and bacteremia (12%). The prevalence of tuberculosis did not differ by HIV status. The 40-day case fatality ratio was 25%. There was no difference in all-cause mortality based on HIV serostatus, presence of neutropenia, or positive microbiologic results. A universal vital assessment score of >4 was associated with all-cause mortality (hazard ratio, 14.5 [95% confidence interval, 5-42.7]). Conclusions The 40-day mortality rate among Ugandan patients with solid tumors who developed chemotherapy-associated febrile illness was high, and few had an identified source of infection. Tuberculosis and bacterial bloodstream infections were the leading diagnoses associated with fever. Tuberculosis should be included in the differential diagnosis for patients who develop fever after receiving chemotherapy in tuberculosis-endemic settings, regardless of HIV serostatus.
Collapse
Affiliation(s)
- Elizabeth A Gulleen
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Allergy and Infectious Diseases Division, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sarah Holte
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Yuzheng Zhang
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | | | - Michael Keng
- Division of Oncology, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | - Christopher C Moore
- Division of Oncology, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Warren Phipps
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Allergy and Infectious Diseases Division, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Cummings MJ, Bakamutumaho B, Jain K, Price A, Owor N, Kayiwa J, Namulondo J, Byaruhanga T, Muwanga M, Nsereko C, Nayiga I, Kyebambe S, Che X, Sameroff S, Tokarz R, Wong W, Postler TS, Larsen MH, Lipkin WI, Lutwama JJ, O’Donnell MR. Brief Report: Detection of Urine Lipoarabinomannan Is Associated With Proinflammatory Innate Immune Activation, Impaired Host Defense, and Organ Dysfunction in Adults With Severe HIV-Associated Tuberculosis in Uganda. J Acquir Immune Defic Syndr 2023; 93:79-85. [PMID: 36701194 PMCID: PMC10079575 DOI: 10.1097/qai.0000000000003159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The immunopathology of disseminated HIV-associated tuberculosis (HIV/TB), a leading cause of critical illness and death among persons living with HIV in sub-Saharan Africa, is incompletely understood. Reflective of hematogenously disseminated TB, detection of lipoarabinomannan (LAM) in urine is associated with greater bacillary burden and poor outcomes in adults with HIV/TB. METHODS We determined the relationship between detection of urine TB-LAM, organ dysfunction, and host immune responses in a prospective cohort of adults hospitalized with severe HIV/TB in Uganda. Generalized additive models were used to analyze the association between urine TB-LAM grade and concentrations of 14 soluble immune mediators. Whole-blood RNA-sequencing data were used to compare transcriptional profiles between patients with high- vs. low-grade TB-LAM results. RESULTS Among 157 hospitalized persons living with HIV, 40 (25.5%) had positive urine TB-LAM testing. Higher TB-LAM grade was associated with more severe physiologic derangement, organ dysfunction, and shock. Adjusted generalized additive models showed that higher TB-LAM grade was significantly associated with higher concentrations of mediators reflecting proinflammatory innate and T-cell activation and chemotaxis (IL-8, MIF, MIP-1β/CCL4, and sIL-2Ra/sCD25). Transcriptionally, patients with higher TB-LAM grades demonstrated multifaceted impairment of antibacterial defense including reduced expression of genes encoding cytotoxic and autophagy-related proteins and impaired cross-talk between innate and cell-mediated immune effectors. CONCLUSIONS Our findings add to emerging data suggesting pathobiological relationships between LAM, TB dissemination, innate cell activation, and evasion of host immunity in severe HIV/TB. Further translational studies are needed to elucidate the role for immunomodulatory therapies, in addition to optimized anti-TB treatment, in this often critically ill population.
Collapse
Affiliation(s)
- Matthew J. Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
- Immunizable Diseases Unit, Uganda Virus Research Institute, Entebbe, Uganda
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Adam Price
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joyce Namulondo
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Timothy Byaruhanga
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Moses Muwanga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | | | - Irene Nayiga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Stephen Kyebambe
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Wai Wong
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Thomas S. Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Max R. O’Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Yang N, He J, Li J, Zhong Y, Song Y, Chen C. Predictors of death among TB/HIV co-infected patients on tuberculosis treatment in Sichuan, China: A retrospective cohort study. Medicine (Baltimore) 2023; 102:e32811. [PMID: 36749231 PMCID: PMC9901956 DOI: 10.1097/md.0000000000032811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis is the most common opportunistic infection among patients with human immunodeficiency virus (HIV) infection, and it is also the leading cause of death, causing approximately one-third of acquired immune deficiency syndrome deaths worldwide. China is on the World Health Organization's global list of 30 high-tuberculosis (TB) burden countries. The objective of this study was to evaluate the mortality rate, survival probabilities, and factors associated with death among patients with TB/HIV co-infection undergoing TB treatment in Sichuan, China. A retrospective cohort study was conducted using the Chinese National TB Surveillance System data of TB/HIV co-infected patients enrolled in TB treatment from January 2020 to December 2020. We calculated the mortality rate and survival probabilities using the Kaplan-Meier estimator, and a Cox proportional hazard model was conducted to identify independent risk factors for TB/HIV co-infection mortality. Hazard ratios and their respective 95% confidence intervals were also reported in this study. Of 828 TB/HIV co-infected patients, 44 (5.31%) died during TB treatment, and the crude mortality rate was 7.76 per 1000 person-months. More than half of the deaths (n = 23) occurred in the first 3 months of TB treatment. Overall survival probabilities were 97.20%, 95.16%, and 91.75% at 3rd, 6th, and 12th month respectively. The independent risk factors for mortality among TB/HIV co-infected patients were having extra-pulmonary TB and pulmonary TB co-infection, history of antiretroviral therapy interruption, and baseline cluster of differentiation 4 T-lymphocyte counts <200 cells/μL at the time of HIV diagnosis. Antiretroviral therapy is important for the survival of TB/HIV co-infected patients, and it is recommended to help prolong life by restoring immune function and preventing extra-pulmonary TB.
Collapse
Affiliation(s)
- Ni Yang
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Jinge He
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Jing Li
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yin Zhong
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yang Song
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Chuang Chen
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Cummings MJ, Bakamutumaho B, Price A, Owor N, Kayiwa J, Namulondo J, Byaruhanga T, Jain K, Postler TS, Muwanga M, Nsereko C, Nayiga I, Kyebambe S, Che X, Sameroff S, Tokarz R, Shah SS, Larsen MH, Lipkin WI, Lutwama JJ, O’Donnell MR. HIV infection drives pro-inflammatory immunothrombotic pathway activation and organ dysfunction among adults with sepsis in Uganda. AIDS 2023; 37:233-245. [PMID: 36355913 PMCID: PMC9780191 DOI: 10.1097/qad.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The global burden of sepsis is concentrated in high HIV-burden settings in sub-Saharan Africa (SSA). Despite this, little is known about the immunopathology of sepsis in persons with HIV (PWH) in the region. We sought to determine the influence of HIV on host immune responses and organ dysfunction among adults hospitalized with suspected sepsis in Uganda. DESIGN Prospective cohort study. METHODS We compared organ dysfunction and 30-day outcome profiles of PWH and those without HIV. We quantified 14 soluble immune mediators, reflective of key domains of sepsis immunopathology, and performed whole-blood RNA-sequencing on samples from a subset of patients. We used propensity score methods to match PWH and those without HIV by demographics, illness duration, and clinical severity, and compared immune mediator concentrations and gene expression profiles across propensity score-matched groups. RESULTS Among 299 patients, 157 (52.5%) were PWH (clinical stage 3 or 4 in 80.3%, 67.7% with known HIV on antiretroviral therapy). PWH presented with more severe physiologic derangement and shock, and had higher 30-day mortality (34.5% vs. 10.2%; P < 0.001). Across propensity score-matched groups, PWH exhibited greater pro-inflammatory immune activation, including upregulation of interleukin (IL)-6, IL-8, IL-15, IL-17 and HMGB1 signaling, with concomitant T-cell exhaustion, prothrombotic pathway activation, and angiopoeitin-2-related endothelial dysfunction. CONCLUSIONS Sepsis-related organ dysfunction and mortality in Uganda disproportionately affect PWH, who demonstrate exaggerated activation of multiple immunothrombotic and metabolic pathways implicated in sepsis pathogenesis. Further investigations are needed to refine understanding of sepsis immunopathology in PWH, particularly mechanisms amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Matthew J. Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
- Immunizable Diseases Unit, Uganda Virus Research Institute, Entebbe, Uganda
| | - Adam Price
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joyce Namulondo
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Timothy Byaruhanga
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Thomas S. Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Moses Muwanga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | | | - Irene Nayiga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Stephen Kyebambe
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shivang S. Shah
- Division of Infectious Diseases, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Max R. O’Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Brinkworth JF, Shaw JG. On race, human variation, and who gets and dies of sepsis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9544695 DOI: 10.1002/ajpa.24527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica F. Brinkworth
- Department of Anthropology University of Illinois Urbana‐Champaign Urbana Illinois USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Evolution, Ecology and Behavior University of Illinois Urbana‐Champaign Urbana Illinois USA
| | - J. Grace Shaw
- Department of Anthropology University of Illinois Urbana‐Champaign Urbana Illinois USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
6
|
Towards Improved Management of Tuberculous Bloodstream Infections: Pharmacokinetic Considerations with Suggestions for Better Treatment Outcomes. Antibiotics (Basel) 2022; 11:antibiotics11070895. [PMID: 35884149 PMCID: PMC9311525 DOI: 10.3390/antibiotics11070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis is the leading cause of sepsis among HIV-infected adults, yet effective treatment remains a challenge. Efficacy of antituberculous drugs is optimized by high Area Under Curve to Minimum Inhibitory Concentration (AUC/MIC) ratios, suggesting that both the drug concentration at the disease site and time above MIC are critical to treatment outcomes. We elaborate on sepsis pathophysiology and show how it adversely affects antituberculous drug kinetics. Expanding distribution volumes secondary to an increased vascular permeability prevents the attainment of target Cmax concentrations for nearly all drugs. Furthermore, sepsis-induced metabolic acidosis promotes protonation, which increases renal clearance of basic drugs such as isoniazid and ethambutol, and hence AUCs are substantially reduced. Compared with the treatment of non-sepsis TB disease, these distorted kinetics underlie the poor treatment outcomes observed with bloodstream infections. In addition to aggressive hemodynamic management, an increase in both the dose and frequency of drug administration are warranted, at least in the early phase of treatment.
Collapse
|
7
|
Xpert Ultra testing of blood in severe HIV-associated tuberculosis to detect and measure Mycobacterium tuberculosis blood stream infection: a diagnostic and disease biomarker cohort study. THE LANCET. MICROBE 2022; 3:e521-e532. [PMID: 35644157 PMCID: PMC9242865 DOI: 10.1016/s2666-5247(22)00062-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis bloodstream infection is a leading cause of death in people living with HIV and disseminated bacillary load might be a key driver of disease severity. We aimed to assess Xpert MTB/RIF Ultra (Xpert Ultra) testing of blood as a diagnostic for M tuberculosis bloodstream infection and investigate cycle threshold as a quantitative disease biomarker. METHODS In this cohort study, we obtained biobanked blood samples from a large and well characterised cohort of adult patients admitted to hospital in Western Cape, South Africa with suspected HIV-associated tuberculosis and a CD4 count less than 350 cells per μL. Patients already receiving antituberculosis therapy were excluded. Samples were obtained on recruitment within 72 h of admission to hospital, and patients were followed up for 12 weeks to determine survival. We tested the biobanked blood samples using the Xpert Ultra platform after lysis and wash processing of the blood. We assessed diagnostic yield (proportion of cases detected, with unavailable test results coded as negative) against a microbiological reference, both as a function of markers of critical-illness and compared with other rapid diagnostics (urine lipoarabinomannan and sputum Xpert). Quantitative blood Xpert Ultra results were evaluated as a disease biomarker by assessing association with disease phenotype defined by principal component analysis of 32 host-response markers. Prognostic value compared to other tuberculosis biomarkers was assessed using likelihood ratio testing of nested models predicting 12-week mortality. FINDINGS Between Jan 16, 2014, and Oct 19, 2016, of the 659 participants recruited to the parent study, 582 had an available biobanked blood sample. 447 (77%) of 582 met the microbiological reference standard for tuberculosis diagnosis. Median CD4 count was 62 (IQR 221-33) cells per μL, and 123 (21%) of participants died by 12-weeks follow-up. Blood Xpert Ultra was positive in 165 (37%) of 447 participants with confirmed tuberculosis by the microbiological reference standard, with a diagnostic yield of 0·37 (95% CI 0·32-0·42). Diagnostic yield increased with lower CD4 count or haemoglobin, and outperformed urine lipoarabinomannan testing in participants with elevated venous lactate. Quantitative blood Xpert Ultra results were more closely associated with mortality than other tuberculosis biomarkers including blood culture, and urine lipoarabinomannan, or urine Xpert (all p<0·05). A principal component of clinical phenotype capturing markers of inflammation, tissue damage, and organ dysfunction was strongly associated with both blood Xpert-Ultra positivity (associated with a SD increase of 1·1 in PC score, p<0·0001) and cycle threshold (r= -0·5; p<0·0001). INTERPRETATION Xpert Ultra testing of pre-processed blood could be used as a rapid diagnostic test in critically ill patients with suspected HIV-associated tuberculosis, while also giving additional prognostic information compared with other available markers. A dose-response relationship between quantitative blood Xpert Ultra results, host-response phenotype, and mortality risk adds to evidence that suggests M tuberculosis bloodstream infection bacillary load is causally related to outcomes. FUNDING Wellcome Trust, National Institute of Health Fogarty International Center, South African MRC, UK National Institute of Health Research, National Research Foundation of South Africa. TRANSLATIONS For the Xhosa and Afrikaans translations of the abstract see Supplementary Materials section.
Collapse
|
8
|
Keeley AJ, Nsutebu E. Improving sepsis care in Africa: an opportunity for change? Pan Afr Med J 2022; 40:204. [PMID: 35136467 PMCID: PMC8783315 DOI: 10.11604/pamj.2021.40.204.30127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/22/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is common and represents a major public health burden with significant associated morbidity and mortality. However, despite substantial advances in sepsis recognition and management in well-resourced health systems, there remains a distinct lack of research into sepsis in Africa. The lack of evidence affects all levels of healthcare delivery from individual patient management to strategic planning at health-system level. This is particular pertinent as African countries experience some of the highest global burden of sepsis. The 2017 World Health Assembly resolution on sepsis and the creation of the Africa Sepsis Alliance provided an opportunity for change. However, progress so far has been frustratingly slow. The recurrent Ebola virus disease outbreaks and the COVID-19 pandemic on the African continent further reinforce the need for urgent healthcare system strengthening. We recommend that African countries develop national action plans for sepsis which should address the needs of all critically ill patients.
Collapse
Affiliation(s)
- Alexander James Keeley
- Florey Institute, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Nsutebu
- Infectious Disease Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Cummings MJ, Bakamutumaho B, Price A, Owor N, Kayiwa J, Namulondo J, Byaruhanga T, Muwanga M, Nsereko C, Sameroff S, Tokarz R, Wong W, Shah SS, Larsen MH, Lipkin WI, Lutwama JJ, O’Donnell MR. Multidimensional analysis of the host response reveals prognostic and pathogen-driven immune subtypes among adults with sepsis in Uganda. Crit Care 2022; 26:36. [PMID: 35130948 PMCID: PMC8822787 DOI: 10.1186/s13054-022-03907-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background The global burden of sepsis is concentrated in sub-Saharan Africa, where severe infections disproportionately affect young, HIV-infected adults and high-burden pathogens are unique. In this context, poor understanding of sepsis immunopathology represents a crucial barrier to development of locally-effective treatment strategies. We sought to determine inter-individual immunologic heterogeneity among adults hospitalized with sepsis in a sub-Saharan African setting, and characterize associations between immune subtypes, infecting pathogens, and clinical outcomes. Methods Among a prospective observational cohort of 288 adults hospitalized with suspected sepsis in Uganda, we applied machine learning methods to 14 soluble host immune mediators, reflective of key domains of sepsis immunopathology (innate and adaptive immune activation, endothelial dysfunction, fibrinolysis), to identify immune subtypes in randomly-split discovery (N = 201) and internal validation (N = 87) sub-cohorts. In parallel, we applied similar methods to whole-blood RNA-sequencing data from a consecutive subset of patients (N = 128) to identify transcriptional subtypes, which we characterized using biological pathway and immune cell-type deconvolution analyses. Results Unsupervised clustering consistently identified two immune subtypes defined by differential activation of pro-inflammatory innate and adaptive immune pathways, with transcriptional evidence of concomitant CD56(-)/CD16( +) NK-cell expansion, T-cell exhaustion, and oxidative-stress and hypoxia-induced metabolic and cell-cycle reprogramming in the hyperinflammatory subtype. Immune subtypes defined by greater pro-inflammatory immune activation, T-cell exhaustion, and metabolic reprogramming were consistently associated with a high-prevalence of severe and often disseminated HIV-associated tuberculosis, as well as more extensive organ dysfunction, worse functional outcomes, and higher 30-day mortality. Conclusions Our results highlight unique host- and pathogen-driven features of sepsis immunopathology in sub-Saharan Africa, including the importance of severe HIV-associated tuberculosis, and reinforce the need to develop more biologically-informed treatment strategies in the region, particularly those incorporating immunomodulation. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03907-3.
Collapse
|
10
|
Rao PS, Moore CC, Mbonde AA, Nuwagira E, Orikiriza P, Nyehangane D, Al-Shaer MH, Peloquin CA, Gratz J, Pholwat S, Arinaitwe R, Boum Y, Mwanga-Amumpaire J, Houpt ER, Kagan L, Heysell SK, Muzoora C. Population Pharmacokinetics and Significant Under-Dosing of Anti-Tuberculosis Medications in People with HIV and Critical Illness. Antibiotics (Basel) 2021; 10:antibiotics10060739. [PMID: 34207312 PMCID: PMC8235594 DOI: 10.3390/antibiotics10060739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Critical illness from tuberculosis (TB) bloodstream infection results in a high case fatality rate for people living with human immunodeficiency virus (HIV). Critical illness can lead to altered pharmacokinetics and suboptimal drug exposures. We enrolled adults living with HIV and hospitalized with sepsis, with and without meningitis, in Mbarara, Uganda that were starting first-line anti-TB therapy. Serum was collected two weeks after enrollment at 1-, 2-, 4-, and 6-h post-dose and drug concentrations quantified by validated LC-MS/MS methods. Non-compartmental analyses were used to determine total drug exposure, and population pharmacokinetic modeling and simulations were performed to determine optimal dosages. Eighty-one participants were enrolled. Forty-nine completed pharmacokinetic testing: 18 (22%) died prior to testing, 13 (16%) were lost to follow-up and one had incomplete testing. Isoniazid had the lowest serum attainment, with only 4.1% achieving a target exposure over 24 h (AUC0–24) of 52 mg·h/L despite appropriate weight-based dosing. Simulations to reach target AUC0–24 found necessary doses of rifampin of 1800 mg, pyrazinamide of 2500–3000 mg, and for isoniazid 900 mg or higher. Given the high case fatality ratio of TB-related critical illness in this population, an early higher dose anti-TB therapy should be trialed.
Collapse
Affiliation(s)
- Prakruti S. Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Christopher C. Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Amir A. Mbonde
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
| | - Edwin Nuwagira
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
| | - Patrick Orikiriza
- Department of Microbiology, University of Global Health Equity, Kigali 6955, Rwanda;
| | - Dan Nyehangane
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Mohammad H. Al-Shaer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.H.A.-S.); (C.A.P.)
| | - Charles A. Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.H.A.-S.); (C.A.P.)
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Rinah Arinaitwe
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Yap Boum
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Juliet Mwanga-Amumpaire
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Leonid Kagan
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
- Correspondence:
| | - Conrad Muzoora
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
| |
Collapse
|
11
|
Schutz C, Chirehwa M, Barr D, Ward A, Janssen S, Burton R, Wilkinson RJ, Shey M, Wiesner L, Denti P, McIlleron H, Maartens G, Meintjes G. Early antituberculosis drug exposure in hospitalized patients with human immunodeficiency virus-associated tuberculosis. Br J Clin Pharmacol 2020; 86:966-978. [PMID: 31912537 PMCID: PMC7163385 DOI: 10.1111/bcp.14207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS Patients hospitalized at the time of human immunodeficiency virus-associated tuberculosis (HIV-TB) diagnosis have high early mortality. We hypothesized that compared to outpatients, there would be lower anti-TB drug exposure in hospitalized HIV-TB patients, and amongst hospitalized patients exposure would be lower in patients who die or have high lactate (a sepsis marker). METHODS We performed pharmacokinetic sampling in hospitalized HIV-TB patients and outpatients. Plasma rifampicin, isoniazid and pyrazinamide concentrations were measured in samples collected predose and at 1, 2.5, 4, 6 and 8 hours on the third day of standard anti-TB therapy. Twelve-week mortality was ascertained for inpatients. Noncompartmental pharmacokinetic analysis was performed. RESULTS Pharmacokinetic data were collected in 59 hospitalized HIV-TB patients and 48 outpatients. Inpatient 12-week mortality was 11/59 (19%). Rifampicin, isoniazid and pyrazinamide exposure was similar between hospitalized and outpatients (maximum concentration [Cmax ]: 7.4 vs 8.3 μg mL-1 , P = .223; 3.6 vs 3.5 μg mL-1 , P = .569; 50.1 vs 46.8 μg mL-1 , P = .081; area under the concentration-time curve from 0 to 8 hours: 41.0 vs 43.8 mg h L-1 , P = 0.290; 13.5 vs 12.4 mg h L-1 , P = .630; 316.5 vs 292.2 mg h L-1 , P = .164, respectively) and not lower in inpatients who died. Rifampicin and isoniazid Cmax were below recommended ranges in 61% and 39% of inpatients and 44% and 35% of outpatients. Rifampicin exposure was higher in patients with lactate >2.2 mmol L-1 . CONCLUSION Mortality in hospitalized HIV-TB patients was high. Early anti-TB drug exposure was similar to outpatients and not lower in inpatients who died. Rifampicin and isoniazid Cmax were suboptimal in 61% and 39% of inpatients and rifampicin exposure was higher in patients with high lactate. Treatment strategies need to be optimized to improve survival.
Collapse
Affiliation(s)
- Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine, University of Cape TownObservatorySouth Africa,Department of MedicineUniversity of Cape TownObservatorySouth Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - David Barr
- Wellcome Trust Liverpool Glasgow Centre for Global Health ResearchUniversity of LiverpoolLiverpoolUK
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine, University of Cape TownObservatorySouth Africa,Department of MedicineUniversity of Cape TownObservatorySouth Africa
| | - Saskia Janssen
- Amsterdam University Medical CentreUniversity of AmsterdamAmsterdamNetherlands
| | - Rosie Burton
- Department of MedicineUniversity of Cape TownObservatorySouth Africa,Khayelitsha Hospital, Department of MedicineCape TownSouth Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine, University of Cape TownObservatorySouth Africa,Department of MedicineUniversity of Cape TownObservatorySouth Africa,Department of Infectious DiseasesImperial CollegeLondonUK,The Francis Crick InstituteLondonUK
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine, University of Cape TownObservatorySouth Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Helen McIlleron
- Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine, University of Cape TownObservatorySouth Africa,Division of Clinical Pharmacology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine, University of Cape TownObservatorySouth Africa,Division of Clinical Pharmacology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine, University of Cape TownObservatorySouth Africa,Department of MedicineUniversity of Cape TownObservatorySouth Africa
| |
Collapse
|
12
|
Prin M, Onofrey L, Purcell L, Kadyaudzu C, Charles A. Prevalence, Etiology, and Outcome of Sepsis among Critically Ill Patients in Malawi. Am J Trop Med Hyg 2020; 103:472-479. [PMID: 32342843 DOI: 10.4269/ajtmh.19-0605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There are scarce data describing the etiology and clinical sequelae of sepsis in low- and middle-income countries (LMICs). This study describes the prevalence and etiology of sepsis among critically ill patients at a referral hospital in Malawi. We conducted an observational prospective cohort study of adults admitted to the intensive care unit or high-dependency unit (HDU) from January 29, 2018 to March 15, 2018. We stratified the cohort based on the prevalence of sepsis as defined in the following three ways: quick sequential organ failure assessment (qSOFA) score ≥ 2, clinical suspicion of systemic infection, and qSOFA score ≥ 2 plus suspected systemic infection. We measured clinical characteristics and blood and urine cultures for all patients; antimicrobial sensitivities were assessed for positive cultures. During the study period, 103 patients were admitted and 76 patients were analyzed. The cohort comprised 39% male, and the median age was 30 (interquartile range: 23-40) years. Eighteen (24%), 50 (66%), and 12 patients (16%) had sepsis based on the three definitions, respectively. Four blood cultures (5%) were positive, two from patients with sepsis by all three definitions and two from patients with clinically suspected infection only. All blood bacterial isolates were multidrug resistant. Of five patients with urinary tract infection, three had sepsis secondary to multidrug-resistant bacteria. Hospital mortality for patients with sepsis based on the three definitions ranged from 42% to 75% versus 12% to 26% for non-septic patients. In summary, mortality associated with sepsis at this Malawi hospital is high. Bacteremia was infrequently detected, but isolated pathogens were multidrug resistant.
Collapse
Affiliation(s)
- Meghan Prin
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Lauren Onofrey
- Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Laura Purcell
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Clement Kadyaudzu
- Department of Anesthesiology, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Anthony Charles
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Kerkhoff AD, Sossen B, Schutz C, Reipold EI, Trollip A, Moreau E, Schumacher SG, Burton R, Ward A, Nicol MP, Meintjes G, Denkinger CM, Broger T. Diagnostic sensitivity of SILVAMP TB-LAM (FujiLAM) point-of-care urine assay for extra-pulmonary tuberculosis in people living with HIV. Eur Respir J 2020; 55:13993003.01259-2019. [PMID: 31699835 PMCID: PMC7002975 DOI: 10.1183/13993003.01259-2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Andrew D Kerkhoff
- Division of HIV, Infectious Diseases and Global Medicine at Zuckerberg San Francisco General Hospital and Trauma Center, Dept of Medicine, University of California, San Francisco, CA, USA .,Contributed equally
| | - Bianca Sossen
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Dept of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Contributed equally
| | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Dept of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | - Rosie Burton
- Southern African Medical Unit, Médecins sans Frontières, Cape Town, South Africa
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Dept of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Dept of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Claudia M Denkinger
- FIND, Geneva, Switzerland.,Division of Tropical Medicine, University of Heidelberg, Heidelberg, Germany.,Contributed equally
| | | |
Collapse
|
14
|
The Early Recognition and Management of Sepsis in Sub-Saharan African Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15092017. [PMID: 30223556 PMCID: PMC6164025 DOI: 10.3390/ijerph15092017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Sepsis is a common cause of morbidity and mortality in sub-Saharan African adults. Standardised management pathways have been documented to improve the survival of adults with sepsis from high-resource settings. Our aim was to assess the current evidence base for early sepsis interventions (recognition, empirical antibiotics, and resuscitation) in resource-poor settings of sub-Saharan Africa. We searched MEDLINE, EMBASE and CINHAL Plus databases to identify interventional studies for the early recognition and management of sepsis in sub-Saharan Africa (1 January 2000 to 1 August 2018) using a protocol-driven search strategy: adults, protocolised care pathway, and sub-Saharan Africa. We identified 725 publications of which three met criteria for final selection. Meta-analysis from two randomised controlled trials demonstrated that mortality was increased by 'early goal-directed therapy' interventions that increased fluid resuscitation (R.R. 1.26, 95% C.I. 1.00⁻1.58, p = 0.045; I² 53%). The third observational cohort study demonstrated improved survival after implementation of protocolised management for sepsis (mortality 33.0% vs. 45.7%, p = 0.005). No study incorporated standardised protocols for empirical antibiotic administration. High rates of pneumonia and mycobacteraemia were reported. There has been little research into the early recognition and management of sepsis in sub-Saharan Africa. Interventional trials of early goal-directed therapy have, to date, increased mortality. There is an urgent need to develop effective strategies to improve outcomes for adults with sepsis in sub-Saharan Africa.
Collapse
|
15
|
Maze MJ, Bassat Q, Feasey NA, Mandomando I, Musicha P, Crump JA. The epidemiology of febrile illness in sub-Saharan Africa: implications for diagnosis and management. Clin Microbiol Infect 2018; 24:808-814. [PMID: 29454844 PMCID: PMC6057815 DOI: 10.1016/j.cmi.2018.02.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fever is among the most common symptoms of people living in Africa, and clinicians are challenged by the similar clinical features of a wide spectrum of potential aetiologies. AIM To summarize recent studies of fever aetiology in sub-Saharan Africa focusing on causes other than malaria. SOURCES A narrative literature review by searching the MEDLINE database, and recent conference abstracts. CONTENT Studies of multiple potential causes of fever are scarce, and for many participants the infecting organism remains unidentified, or multiple co-infecting microorganisms are identified, and establishing causation is challenging. Among ambulatory patients, self-limiting arboviral infections and viral upper respiratory infections are common, occurring in up to 60% of children attending health centres. Among hospitalized patients there is a high prevalence of potentially fatal infections requiring specific treatment. Bacterial bloodstream infection and bacterial zoonoses are major causes of fever. In recent years, the prevalence of antimicrobial resistance among bacterial isolates has increased, notably with spread of extended spectrum β-lactamase-producing Enterobacteriaceae and fluoroquinolone-resistant Salmonella enterica. Among those with human immunodeficiency virus (HIV) infection, Mycobacterium tuberculosis bacteraemia has been confirmed in up to 34.8% of patients with sepsis, and fungal infections such as cryptococcosis and histoplasmosis remain important. IMPLICATIONS Understanding the local epidemiology of fever aetiology, and the use of diagnostics including malaria and HIV rapid-diagnostic tests, guides healthcare workers in the management of patients with fever. Current challenges for clinicians include assessing which ambulatory patients require antibacterial drugs, and identifying hospitalized patients infected with organisms that are not susceptible to empiric antibacterial regimens.
Collapse
Affiliation(s)
- M J Maze
- Centre for International Health, University of Otago, New Zealand; Kilimanjaro Christian Medical Centre, Moshi, Tanzania.
| | - Q Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, Barcelona, Spain; Paediatric Infectious Diseases Unit, Paediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - N A Feasey
- Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - I Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - P Musicha
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J A Crump
- Centre for International Health, University of Otago, New Zealand; Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
| |
Collapse
|
16
|
Pavlinac PB, Lokken EM, Walson JL, Richardson BA, Crump JA, John-Stewart GC. Mycobacterium tuberculosis bacteremia in adults and children: a systematic review and meta-analysis. Int J Tuberc Lung Dis 2018; 20:895-902. [PMID: 27287641 DOI: 10.5588/ijtld.15.0773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED SETTINGp: Among human immunodeficiency virus (HIV) infected adults living in tuberculosis (TB) endemic settings, Mycobacterium tuberculosis is a common cause of bloodstream infections. Although young children have an increased propensity for M. tuberculosis dissemination, M. tuberculosis bacteremia is infrequently described in children. OBJECTIVE To determine the prevalence of M. tuberculosis bacteremia in adult and pediatric patients and to examine sources of heterogeneity between estimates. DESIGN Systematic review and meta-analysis. RESULTS Of 1077 reviewed abstracts, 27 publications met the inclusion criteria, yielding 29 independent M. tuberculosis bacteremia prevalence estimates: 22 in adults, 6 in children, and 1 not stratified by age group. The random effects pooled M. tuberculosis bacteremia prevalence in adults was 13.5% (95%CI 10.8-16.2) and 0.4% (95%CI 0-0.9) in children (P for difference = 0.004). Restricting analyses to HIV-infected participants, pooled M. tuberculosis bacteremia prevalence from 21 adult studies was 15.5% (95%CI 12.5-18.5) and 0.8% (95%CI 0-1.8) in three pediatric studies (P = 0.001). Inclusion of pre-determined study-level confounders did not account for observed differences in M. tuberculosis bacteremia prevalence between age groups. CONCLUSION While M. tuberculosis bacteremia appears relatively common in adults, particularly those with HIV infection, bloodstream M. tuberculosis appears to be rare in children.
Collapse
Affiliation(s)
- P B Pavlinac
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - E M Lokken
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - J L Walson
- Department of Global Health, University of Washington, Seattle, Washington, USA; Department of Epidemiology, University of Washington, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - B A Richardson
- Department of Global Health, University of Washington, Seattle, Washington, USA; Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - J A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - G C John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA; Department ofEpidemiology, University of Washington, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Department ofMedicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Lawn SD, Gupta-Wright A. Detection of lipoarabinomannan (LAM) in urine is indicative of disseminated TB with renal involvement in patients living with HIV and advanced immunodeficiency: evidence and implications. Trans R Soc Trop Med Hyg 2016; 110:180-5. [PMID: 26884498 PMCID: PMC4755427 DOI: 10.1093/trstmh/trw008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TB is the leading cause of HIV/AIDS-related deaths globally. New diagnostic tools are urgently needed to avert deaths from undiagnosed HIV-associated TB. Although simple assays that detect lipoarabinomannan (LAM) in urine have been commercially available for years, their specific role and utility were initially misunderstood, such that they have been slower to emerge from the diagnostics pipeline than otherwise might have been expected. In this article, we review and explain how urine-LAM assays should be understood as diagnostics for disseminated TB in HIV-positive patients with advanced immunodeficiency, in whom haematogenous TB dissemination to the kidneys serves as the primary mechanism by which LAM enters the urine. These insights are critical for the appropriate design of studies to evaluate these assays and to understand how they might be most usefully implemented. This understanding also supports the 2015 WHO recommendations on the restricted use of these assays in sick HIV-positive patients with advanced immunodeficiency.
Collapse
Affiliation(s)
- Stephen D Lawn
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK The Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ankur Gupta-Wright
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK Malawi-Liverpool-Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
18
|
Gupta-Wright A, Peters JA, Flach C, Lawn SD. Detection of lipoarabinomannan (LAM) in urine is an independent predictor of mortality risk in patients receiving treatment for HIV-associated tuberculosis in sub-Saharan Africa: a systematic review and meta-analysis. BMC Med 2016; 14:53. [PMID: 27007773 PMCID: PMC4804532 DOI: 10.1186/s12916-016-0603-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/17/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Simple immune capture assays that detect mycobacterial lipoarabinomannan (LAM) antigen in urine are promising new tools for the diagnosis of HIV-associated tuberculosis (HIV-TB). In addition, however, recent prospective cohort studies of patients with HIV-TB have demonstrated associations between LAM in the urine and increased mortality risk during TB treatment, indicating an additional utility of urinary LAM as a prognostic marker. We conducted a systematic review and meta-analysis to summarise the evidence concerning the strength of this relationship in adults with HIV-TB in sub-Saharan Africa, thereby quantifying the assay's prognostic value. METHODS We searched MEDLINE and Embase databases using comprehensive search terms for 'HIV', 'TB', 'LAM' and 'sub-Saharan Africa'. Identified studies were reviewed and selected according to predefined criteria. RESULTS We identified 10 studies eligible for inclusion in this systematic review, reporting on a total of 1172 HIV-TB cases. Of these, 512 patients (44 %) tested positive for urinary LAM. After a variable duration of follow-up of between 2 and 6 months, overall case fatality rates among HIV-TB cases varied between 7 % and 53 %. Pooled summary estimates generated by random-effects meta-analysis showed a two-fold increased risk of mortality for urinary LAM-positive HIV-TB cases compared to urinary LAM-negative HIV-TB cases (relative risk 2.3, 95 % confidence interval 1.6-3.1). Some heterogeneity was explained by study setting and patient population in sub-group analyses. Five studies also reported multivariable analyses of risk factors for mortality, and pooled summary estimates demonstrated over two-fold increased mortality risk (odds ratio 2.5, 95 % confidence interval 1.4-4.5) among urinary LAM-positive HIV-TB cases, even after adjustment for other risk factors for mortality, including CD4 cell count. CONCLUSIONS We have demonstrated that detectable LAM in urine is associated with increased risk of mortality during TB treatment, and that this relationship remains after adjusting for other risk factors for mortality. This may simply be due to a positive test for urinary LAM serving as a marker of higher mycobacterial load and greater disease dissemination and severity. Alternatively, LAM antigen may directly compromise host immune responses through its known immunomodulatory effects. Detectable LAM in the urine is an independent risk factor for mortality among patients receiving treatment for HIV-TB. Further research is warranted to elucidate the underlying mechanisms and to determine whether this vulnerable patient population may benefit from adjunctive interventions.
Collapse
Affiliation(s)
- Ankur Gupta-Wright
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Malawi-Liverpool-Wellcome Trust Clinical Research Program, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Jurgens A Peters
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Clare Flach
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Stephen D Lawn
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- The Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Peter JG, Zijenah LS, Chanda D, Clowes P, Lesosky M, Gina P, Mehta N, Calligaro G, Lombard CJ, Kadzirange G, Bandason T, Chansa A, Liusha N, Mangu C, Mtafya B, Msila H, Rachow A, Hoelscher M, Mwaba P, Theron G, Dheda K. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet 2016; 387:1187-97. [PMID: 26970721 DOI: 10.1016/s0140-6736(15)01092-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND HIV-associated tuberculosis is difficult to diagnose and results in high mortality. Frequent extra-pulmonary presentation, inability to obtain sputum, and paucibacillary samples limits the usefulness of nucleic-acid amplification tests and smear microscopy. We therefore assessed a urine-based, lateral flow, point-of-care, lipoarabinomannan assay (LAM) and the effect of a LAM-guided anti-tuberculosis treatment initiation strategy on mortality. METHODS We did a pragmatic, randomised, parallel-group, multicentre trial in ten hospitals in Africa--four in South Africa, two in Tanzania, two in Zambia, and two in Zimbabwe. Eligible patients were HIV-positive adults aged at least 18 years with at least one of the following symptoms of tuberculosis (fever, cough, night sweats, or self-reported weightloss) and illness severity necessitating admission to hospital. Exclusion criteria included receipt of any anti-tuberculosis medicine in the 60 days before enrolment. We randomly assigned patients (1:1) to either LAM plus routine diagnostic tests for tuberculosis (smear microscopy, Xpert-MTB/RIF, and culture; LAM group) or routine diagnostic tests alone (no LAM group) using computer-generated allocation lists in blocks of ten. All patients were asked to provide a urine sample of at least 30 mL at enrolment, and trained research nurses did the LAM test in patients allocated to this group using the Alere Determine tuberculosis LAM Ag lateral flow strip test (Alere, USA) at the bedside on enrolment. On the basis of a positive test result, the nurses made a recommendation for initiating anti-tuberculosis treatment. The attending physician made an independent decision about whether to start treatment or not. Neither patients nor health-care workers were masked to group allocation and test results. The primary endpoint was 8-week all-cause mortality assessed in the modified intention-to-treat population (those who received their allocated intervention). This trial is registered with ClinicalTrials.gov, number NCT01770730. FINDINGS Between Jan 1, 2013, and Oct 2, 2014, we screened 8728 patients and randomly assigned 2659 to treatment (1336 to LAM, 1323 to no LAM). 108 patients did not receive their allocated treatment, mainly because they did not meet the inclusion criteria, and 23 were excluded from analysis, leaving 2528 in the final modified intention-to-treat analysis (1257 in the LAM group, 1271 in the no LAM group). Overall all-cause 8-week mortality occurred in 578 (23%) patients, 261 (21%) in LAM and 317 (25%) in no LAM, an absolute reduction of 4% (95% CI 1-7). The risk ratio adjusted for country was 0·83 (95% CI 0·73-0·96), p=0·012, with a relative risk reduction of 17% (95% CI 4-28). With the time-to-event analysis, there were 159 deaths per 100 person-years in LAM and 196 per 100 person-years in no LAM (hazard ratio adjusted for country 0·82 [95% CI 0·70-0·96], p=0·015). No adverse events were associated with LAM testing. INTERPRETATION Bedside LAM-guided initiation of anti-tuberculosis treatment in HIV-positive hospital inpatients with suspected tuberculosis was associated with reduced 8-week mortality. The implementation of LAM testing is likely to offer the greatest benefit in hospitals where diagnostic resources are most scarce and where patients present with severe illness, advanced immunosuppression, and an inability to self-expectorate sputum. FUNDING European Developing Clinical Trials Partnership, the South African Medical Research Council, and the South African National Research Foundation.
Collapse
Affiliation(s)
- Jonny G Peter
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Clinical Immunology and Allergology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Lung Infection and Immunity Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Lynn S Zijenah
- University of Zimbabwe College of Health Sciences, Department of Immunology, Harare, Zimbabwe
| | - Duncan Chanda
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa; University Teaching Hospital, Lusaka, Zambia; Institute for Medical Research & Training, University Teaching Hospital, Lusaka, Zambia
| | - Petra Clowes
- National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania; Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany
| | - Maia Lesosky
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Phindile Gina
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nirja Mehta
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Greg Calligaro
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Carl J Lombard
- Biostatistics Unit, South African Medical Research Council, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Gerard Kadzirange
- University of Zimbabwe College of Health Sciences, Department of Medicine, Harare, Zimbabwe
| | - Tsitsi Bandason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Abidan Chansa
- University Teaching Hospital, Lusaka, Zambia; Institute for Medical Research & Training, University Teaching Hospital, Lusaka, Zambia
| | - Namakando Liusha
- University Teaching Hospital, Lusaka, Zambia; Institute for Medical Research & Training, University Teaching Hospital, Lusaka, Zambia
| | - Chacha Mangu
- National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Bariki Mtafya
- Biomedical Research and Training Institute, Harare, Zimbabwe; National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Henry Msila
- National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Andrea Rachow
- National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania; Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research, Munich, Germany
| | - Michael Hoelscher
- National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania; Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research, Munich, Germany
| | - Peter Mwaba
- University Teaching Hospital, Lusaka, Zambia
| | - Grant Theron
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research and Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Clinical Immunology and Allergology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Lung Infection and Immunity Unit, University of Cape Town Lung Institute, Cape Town, South Africa.
| |
Collapse
|