1
|
Billows N, Phelan J, Xia D, Peng Y, Clark TG, Chang YM. Large-scale statistical analysis of Mycobacterium tuberculosis genome sequences identifies compensatory mutations associated with multi-drug resistance. Sci Rep 2024; 14:12312. [PMID: 38811658 PMCID: PMC11137121 DOI: 10.1038/s41598-024-62946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, has a significant impact on global health worldwide. The development of multi-drug resistant strains that are resistant to the first-line drugs isoniazid and rifampicin threatens public health security. Rifampicin and isoniazid resistance are largely underpinned by mutations in rpoB and katG respectively and are associated with fitness costs. Compensatory mutations are considered to alleviate these fitness costs and have been observed in rpoC/rpoA (rifampicin) and oxyR'-ahpC (isoniazid). We developed a framework (CompMut-TB) to detect compensatory mutations from whole genome sequences from a large dataset comprised of 18,396 M. tuberculosis samples. We performed association analysis (Fisher's exact tests) to identify pairs of mutations that are associated with drug-resistance, followed by mediation analysis to identify complementary or full mediators of drug-resistance. The analyses revealed several potential mutations in rpoC (N = 47), rpoA (N = 4), and oxyR'-ahpC (N = 7) that were considered either 'highly likely' or 'likely' to confer compensatory effects on drug-resistance, including mutations that have previously been reported and validated. Overall, we have developed the CompMut-TB framework which can assist with identifying compensatory mutations which is important for more precise genome-based profiling of drug-resistant TB strains and to further understanding of the evolutionary mechanisms that underpin drug-resistance.
Collapse
Affiliation(s)
- Nina Billows
- Royal Veterinary College, University of London, London, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Dong Xia
- Royal Veterinary College, University of London, London, UK
| | | | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Yu-Mei Chang
- Royal Veterinary College, University of London, London, UK
| |
Collapse
|
2
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Highly transmitted M. tuberculosis strains are more likely to evolve MDR/XDR and cause outbreaks, but what makes them highly transmitted? Tuberculosis (Edinb) 2021; 129:102092. [PMID: 34102584 DOI: 10.1016/j.tube.2021.102092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
Multi-Drug-Resistant strains of Mycobacterium tuberculosis (MDR-TB) are a serious obstacle to global TB eradication. While most MDR-TB strains are infrequently transmitted, a few cause large transmission clusters that contribute substantially to local MDR-TB burdens. Here we examine whether the known mutations in these strains can explain their success. Drug resistance mutations differ in fitness costs and strains can also acquire compensatory mutations (CM) to restore fitness, but some highly transmitted MDR strains have no CM. The acquisition of resistance mutations that maintain high transmissibility seems to occur by chance and are more likely in strains that are intrinsically highly transmitted and cause many cases. Modern Beijing lineage strains have caused several large outbreaks, but MDR outbreaks are also caused by ancient Beijing and lineage 4 strains, suggesting the lineage is less important than the characteristics of the individual strain. The development of fluoroquinolone resistance appears to represent another level of selection, in which strains must surmount unknown fitness costs of gyrA mutations. The genetic determinants of high transmission are poorly defined but may involve genes encoding proteins involved in molybdenum acquisition and the Esx systems. In addition, strains eliciting lower cytokine responses and producing more caseating granulomas may have advantages for transmission. Successful MDR/XDR strains generally evolve from highly transmitted drug sensitive parent strains due to selection pressures from deficiencies in local TB control programs. Until TB incidence is considerably reduced, there will likely be highly transmitted strains that develop resistance to any new antibiotic.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; Laboratorio de Genética Molecular, CMBC, IVIC, Km. 11 Carr. Panamericana, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
3
|
Low-Level Rifampin Resistance and rpoB Mutations in Mycobacterium tuberculosis: an Analysis of Whole-Genome Sequencing and Drug Susceptibility Test Data in New York. J Clin Microbiol 2021; 59:JCM.01885-20. [PMID: 32999007 DOI: 10.1128/jcm.01885-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/05/2020] [Indexed: 01/02/2023] Open
Abstract
Rapid and reliable detection of rifampin (RIF) resistance is critical for the diagnosis and treatment of drug-resistant and multidrug-resistant (MDR) tuberculosis. Discordant RIF phenotype/genotype susceptibility results remain a challenge due to the presence of rpoB mutations that do not confer high levels of RIF resistance, as have been exhibited in strains with mutations such as Ser450Leu. These strains, termed low-level RIF resistant, exhibit elevated RIF MICs compared to fully susceptible strains but remain phenotypically susceptible by mycobacterial growth indicator tube (MGIT) testing and have been associated with poor patient outcomes. Here, we assess RIF resistance prediction by whole-genome sequencing (WGS) among a set of 1,779 prospectively tested strains by both prevalence of rpoB gene mutation and phenotype as part of routine clinical testing during a 2.5-year period. During this time, 139 strains were found to have nonsynonymous rpoB mutations, 53 of which were associated with RIF resistance, including both low-level and high-level resistance. Resistance to RIF (1.0 μg/ml in MGIT) was identified in 43 (81.1%) isolates. The remaining 10 (18.9%) strains were susceptible by MGIT but were confirmed to be low-level RIF resistant by MIC testing. Full rpoB gene sequencing overcame the limitations of critical concentration phenotyping, probe-based genotyping, and partial gene sequencing methods. Universal clinical WGS with concurrent phenotypic testing provided a more complete understanding of the prevalence and type of rpoB mutations and their association with RIF resistance in New York.
Collapse
|
4
|
Wang S, Zhou Y, Zhao B, Ou X, Xia H, Zheng Y, Song Y, Cheng Q, Wang X, Zhao Y. Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis. Front Med 2020; 14:51-59. [PMID: 31938981 DOI: 10.1007/s11684-019-0720-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/07/2019] [Indexed: 11/26/2022]
Abstract
The aim of this study was to characterize rpoC gene mutations in Mycobacterium tuberculosis (MTB) and investigate the factors associated with rpoC mutations and the relation between rpoC mutations and tuberculosis (TB) transmission. A total of 245 MTB clinical isolates from patients with TB in six provinces and two municipalities in China were characterized based on gene mutations through DNA sequencing of rpoC and rpoB genes, phenotyping via standard drug susceptibility testing, and genotypic profiling by mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. Approximately 36.4% of the rifampin-resistant isolates harbored nonsynonymous mutations in the rpoC gene. Twenty-nine nonsynonymous single mutations and three double mutations were identified. The rpoC mutations at locus 483 (11.3%) were predominant, and the mutations at V483G, W484G, I491V, L516P, L566R, N698K, and A788E accounted for 54.5% of the total detected mutations. Fifteen new mutations in the rpoC gene were identified. Rifampin resistance and rpoB mutations at locus 531 were significantly associated with rpoC mutations. MIRU-VNTR genotype results indicated that 18.4% of the studied isolates were clustered, and the rpoC mutations were not significantly associated with MIRU-VNTR clusters. A large proportion of rpoC mutation was observed in the rifampicin-resistant MTB isolates. However, the findings of this study do not support the association of rpoC mutation with compensated transmissibility.
Collapse
Affiliation(s)
- Shengfen Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yang Zheng
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanyuan Song
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Cheng
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinyang Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Department of Microbiology, Basic Medicine College, Harbin Medical University, Harbin, 150081, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
5
|
Oliveira O, Gaio R, Carvalho C, Correia-Neves M, Duarte R, Rito T. A nationwide study of multidrug-resistant tuberculosis in Portugal 2014-2017 using epidemiological and molecular clustering analyses. BMC Infect Dis 2019; 19:567. [PMID: 31262256 PMCID: PMC6604307 DOI: 10.1186/s12879-019-4189-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/13/2019] [Indexed: 12/03/2022] Open
Abstract
Background Increasing multidrug-resistant tuberculosis (MDR-TB) incidence is a major threat against TB eradication worldwide. We aim to conduct a detailed MDR-TB study in Portugal, an European country with endemic TB, combining genetic analysis and epidemiological data, in order to assess the efficiency of public health containment of MRD-TB in the country. Methods We used published MIRU-VNTR data, that we reanalysed using a phylogenetic analysis to better describe MDR-TB cases transmission occurring in Portugal from 2014 to 2017, further enriched with epidemiological data of these cases. Results We show an MDR-TB transmission scenario, where MDR strains likely arose and are transmitted within local chains. 63% of strains were clustered, suggesting high primary transmission (estimated as 50% using MIRU-VNTR data and 15% considering epidemiological links). These values are higher than those observed across Europe and even for sensitive strains in Portugal using similar methodologies. MDR-TB cases are associated with individuals born in Portugal and evolutionary analysis suggests a local evolution of strains. Consistently the sublineage LAM, the most common in sensitive strains in Europe, is the more frequent in Portugal in contrast with the remaining European MDR-TB picture where immigrant-associated Beijing strains are more common. Conclusions Despite efforts to track and contain MDR-TB strains in Portugal, their transmission patterns are still as uncontrolled as that of sensitive strains, stressing the need to reinforce surveillance and containment strategies. Electronic supplementary material The online version of this article (10.1186/s12879-019-4189-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olena Oliveira
- Population Health Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal.,ICVS/3B, PT Government Associate Laboratory, 4710-057 Braga, 4805-017, Guimarães, Portugal.,EPIUnit, Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal
| | - Rita Gaio
- Department of Mathematics, Faculty of Sciences, Porto, Portugal.,Centre of Mathematics, University of Porto, Porto, Portugal
| | - Carlos Carvalho
- Department of Public Health, Northern Regional Health Administration, 4000-078, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-013, Porto, Portugal
| | - Margarida Correia-Neves
- Population Health Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal.,ICVS/3B, PT Government Associate Laboratory, 4710-057 Braga, 4805-017, Guimarães, Portugal
| | - Raquel Duarte
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal.,Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pulmonology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho EPE, 4400-129, Vila Nova de Gaia, Portugal
| | - Teresa Rito
- Population Health Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal. .,ICVS/3B, PT Government Associate Laboratory, 4710-057 Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
6
|
Sánchez-Montalvá A, Salvador F, Molina-Morant D, Molina I. Tuberculosis and immigration. Enferm Infecc Microbiol Clin 2017; 36:446-455. [PMID: 29221825 DOI: 10.1016/j.eimc.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022]
Abstract
Tuberculosis continues to be a major public health problem in Spain. The incidence of tuberculosis in the native population has declined steadily in recent years. Migration flows have changed drastically since the beginning of the 21st century, with Spain becoming a recipient country for immigrants. Because most of the immigrants comes from countries with high incidence of tuberculosis, the contribution of the migrant population to new cases of tuberculosis is higher in relative terms than its weight in the total population. Tuberculosis programs must address the cultural, economic and medical aspects of the disease, and particularly target groups at risk, including the migrant population. In this paper, we will review the epidemiology and dynamics of tuberculosis in the migrant population, their differentiating clinical characteristics and the programmatic actions to address the problem.
Collapse
Affiliation(s)
- Adrián Sánchez-Montalvá
- Departamento de Enfermedades Infecciosas, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Programa de Salud Internacional del ICS (PROSICS), Barcelona, España.
| | - Fernando Salvador
- Departamento de Enfermedades Infecciosas, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Programa de Salud Internacional del ICS (PROSICS), Barcelona, España
| | - Daniel Molina-Morant
- Departamento de Enfermedades Infecciosas, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Programa de Salud Internacional del ICS (PROSICS), Barcelona, España
| | - Israel Molina
- Departamento de Enfermedades Infecciosas, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Programa de Salud Internacional del ICS (PROSICS), Barcelona, España
| |
Collapse
|