1
|
Takahashi S, Ishizuka S, Kitamura K, Yang T, Abe SI, Murakami G, Rodríguez-Vázquez JF. Growth patterns of facial muscles at the angle of the mouth: A histological study using midterm and near-term human fetuses. J Anat 2024; 245:535-550. [PMID: 38953435 PMCID: PMC11424822 DOI: 10.1111/joa.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
At the angle of the mouth, spoke-like muscle bundles converge at the "modiolus," which is believed to appear in utero. The aim of this study was to investigate the growth of the modiolus histologically. We studied frontal histological sections of the face from 12 midterm and six near-term fetuses. At midterm, a convergence of the levator anguli oris (LAOM) and depressor anguli oris (DAOM) was frequently present, and another convergence of the LAOM with the platysma (PM) or orbicularis oris (OOM) was also often evident. At near-term, muscle fiber merging or interdigitation was classified into nine combinations, five of which were frequently seen: LAOM-PM, LAOM-DAOM, zygomaticus major (ZMM)-orbicularis oris (OOM), buccinator (BM)-LAOM, and BM-PM. These combinations existed at slightly different depths and/or sites, thus allowing the angle of the mouth to receive multiple muscles. Notably, tissues interposed between the muscle fibers were limited to a thin epimysium at each crossing or interdigitation. Therefore, the LAOM, DAOM, OOM, BM, and PM appear to form a basic configuration at birth, but the development and growth were much delayed than the classical description. The modiolus is not a specific fibromuscular structure but simply represents a cluster of muscle convergence sites. Even at meeting between an elevator and depressor, a specific fibrous structure seems unlikely to connect the epimysium for the muscle convergence. Instead, the central nervous system appears to regulate the activity of related muscles to minimize tension or friction stress at the meeting site.
Collapse
Affiliation(s)
- Sakiko Takahashi
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Tianyi Yang
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | |
Collapse
|
2
|
Kim JH, Ishizuka S, Kitamura K, Murakami G, Rodríguez-Vázquez JF, Abe SI, Kasahara M. Ontogenic transformation of the ankle from the initial mediolateral arrangement of the calcaneus and talus: A histological study of human embryos and early fetuses. J Anat 2024; 245:392-404. [PMID: 39032027 PMCID: PMC11306779 DOI: 10.1111/joa.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 03/10/2024] [Indexed: 07/22/2024] Open
Abstract
The human calcaneus is robust and provides a prominent heel for effective bipedal locomotion, although the adjacent talus has no muscle attachments. However, there is incomplete information about the morphological changes in these prominent bones during embryo development. We examined serial histological sections of 23 human embryos and early-term fetuses (approximately 5-10 weeks' gestational age [GA]). At a GA of 5 weeks, the precartilage talus was parallel to and on the medial side of the calcaneus, which had a prolate spheroid shape and consisted of three masses. At a GA of 6 weeks, the cartilaginous talus extended along the proximodistal axis, and the tuber calcanei became long and bulky, with a small sustentaculum talus at the "distal" side. At a GA of 6 to 8 weeks, the sustentaculum had a medial extension below the talus so that the talus "rode over" the calcaneus. In contrast, the talus had a more complex shape, depending on the growth of adjacent bones. At a GA of 9 to 10 weeks, the talus was above the calcaneus, but the medial part still faced the plantar subcutaneous tissue because of the relatively small sustentaculum. Therefore, the final morphology appeared after an additional several weeks. Muscle activity seemed to facilitate growth of the tuber calcanei, but growth of the other parts of calcaneus, including the sustentaculum, seemed to depend on active proliferation at the different sites of cartilage. Multiple tendons and ligaments seemed to fix the talus so that it remained close to the calcaneus.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Korea
| | | | - Kei Kitamura
- Department of Histology and Embryology, Tokyo Dental College, Tokyo, Japan
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Asuka Hospital, Iwamizawa, Japan
| | | | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
3
|
Kitamura K, Suzuki R, Ishizuka S, Murakami G, Rodríguez-Vázquez JF, Yamamoto H, Abe SI. Growing stylohyoideus muscle insertion to the hyoid bone with special reference to its topographical relation to the intermediate tendon of digastricus muscle: A histological study using human fetuses. Ann Anat 2024; 254:152246. [PMID: 38460858 DOI: 10.1016/j.aanat.2024.152246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND In adults, the intermediate tendon of digastricus muscle usually runs along the medial or lateral side of the stylohyoideus muscle insertion. To provide a better understanding of the variations, we examined the topographical anatomy of the muscle and tendon in fetuses. METHODS We examined histological sections from six early-term, 26 mid-term and six near-term fetuses (approximately 8-9, 12-18 weeks and 25-33 weeks). RESULTS At early-term, an initial sheath of intermediate tendon of digastricus muscle received the stylohyoideus muscle at the superior aspect. The muscle and tendon was distant from the hyoid. At mid-term, near the insertion to the hyoid greater horn, the stylohyoideus muscle consistently surrounded more than 2/3 of the intermediate tendon circumference. In contrast, we found no near-term specimen in which the stylohyoideus muscle surrounded the intermediate tendon. The multilayered tendon sheath was fully developed until near-term and connected to the body of hyoid by an intermuscular septum between the thyrohyoideus muscle and one or two of suprahyoid muscles. Therefore, the hyoid insertion of the styloglossus muscle was a transient morphology at mid-term. CONCLUSION The stylohyoideus muscle insertion was appeared to move from the tendon sheath to the hyoid greater horn and, until near-term, return to the tendon sheath. A fascia connecting the tendon sheath to the body of hyoid was strengthened by the suprahyoid and infrahyoid muscles. The latter muscles seemed to regulate fixation/relaxation of the intermediate tendon to the hyoid. The stylohyoideus muscle slips sandwiching the intermediate tendon might be a rare morphology.
Collapse
Affiliation(s)
- Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan.
| | - Ryu Suzuki
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| | | | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan; Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan.
| | | | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan.
| | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
4
|
Hayashi S, Kim JH, Jin ZW, Murakami G, Rodríguez-Vázquez JF, Abe H. Development and growth of the calcaneal tendon sheath with special reference to its topographical relationship with the tendon of the plantaris muscle: a histological study of human fetuses. Surg Radiol Anat 2023; 45:247-253. [PMID: 36689056 DOI: 10.1007/s00276-023-03086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE The calcaneal tendon sheath has several vascular routes and is a common site of inflammation. In adults, it is associated with the plantaris muscle tendon, but there are individual variations in the architecture and insertion site. We describe changes of the tendon sheath during fetal development. MATERIALS AND METHODS Histological sections of the unilateral ankles of 20 fetuses were examined, ten at 8-12 weeks gestational age (GA) and twelve at 26-39 weeks GA. RESULTS At 8-12 weeks GA, the tendon sheath simply consisted of a multilaminar layer that involved the plantaris tendon. At 26-39 weeks, each calcaneal tendon had a multilaminar sheath that could be roughly divided into three layers. The innermost layer was attached to the tendon and sometimes contained the plantaris tendon; the multilaminar intermediate layer contained vessels and often contained the plantaris tendon; and the outermost layer was thick and joined other fascial structures, such as a tibial nerve sheath and subcutaneous plantar fascia. The intermediate layer merged with the outermost layer near the insertion to the calcaneus. CONCLUSION In spite of significant variations among adults, the fetal plantar tendon was always contained in an innermost or intermediate layer of the calcaneal tendon sheath in near-term fetuses. After birth, mechanical stresses such as walking might lead to fusion or separation of the multilaminar sheath in various manners. When reconstruction occurs postnatally, there may be individual variations in blood supply routes and morphology of the distal end of the plantaris tendon.
Collapse
Affiliation(s)
- Shogo Hayashi
- Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Geunji-ro 20, Deokjin-gu, Jeonju, 54907, Republic of Korea.
| | - Zhe Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Gen Murakami
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | | - Hiroshi Abe
- Emeritus Professor of Akita University School of Medicine, Akita, Japan
| |
Collapse
|
5
|
Yamaguchi Y, Kodama R, Yamada S. Morphogenetic progression of thigh and lower leg muscles during human embryonic development. Anat Rec (Hoboken) 2022. [PMID: 36571467 DOI: 10.1002/ar.25140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/12/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
Fetal musculoskeletal movements are first observed at approximately seven to 8 weeks of gestation. However, the separation and formation of skeletal muscles, especially the limbs, have not yet been described in detail. In this study, we elucidate the sequence of events leading to the formation of each thigh and lower leg muscle using serial sections. To observe muscle formation, 26 serial sections (50 legs) of human embryonic specimens ranging from Carnegie stages (CS) 19 to 23 were selected from the Kyoto collection stored at the Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine. As a result, we show the detailed formation and separation processes of the thigh and lower leg muscles. In the thigh, sartorius and tensor fasciae latae are separated at CS19, and the individual muscles observed in adults are identified after CS21. In the lower leg, the tibialis anterior exhibits early separation at CS20, and all muscles are identified at CS22. This study enables future research into the relationship between embryonic development and the evolution of muscle action from quadrupedal to erect bipedal walking.
Collapse
Affiliation(s)
- Yutaka Yamaguchi
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryota Kodama
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Kędzia A, Dudek K, Ziajkiewicz M, Wolanczyk M, Seredyn A, Derkowski W, Domagala ZA. The morphometrical and topographical evaluation of the superior gluteal nerve in the prenatal period. PLoS One 2022; 17:e0273397. [PMID: 36018841 PMCID: PMC9417028 DOI: 10.1371/journal.pone.0273397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
Advances in medical science are helping to break down the barriers to surgery. In the near future, neonatal or in utero operations will become the standard for the treatment of defects in the human motor system. In order to carry out such procedures properly, detailed knowledge of fetal anatomy is necessary. It must be presented in an attractive way not only for anatomists but also for potential clinicians who will use this knowledge in contact with young patients. This work responds to this demand and presents the anatomy of the superior gluteal nerve in human fetuses in an innovative way. The aim of this work is to determine the topography and morphometry of the superior gluteal nerve in the prenatal period. We chose the superior gluteal nerve as the object of our study because of its clinical significance—for the practice of planning and carrying out hip surgery and when performing intramuscular injections.
Material and methods
The study was carried out on 40 human fetuses (20 females and 20 males) aged from 15 to 29 weeks (total body length v-pl from 130 to 345 mm). Following methods were used: anthropological, preparatory, image acquisition with a digital camera, computer measurement system Scion for Windows 4.0.3.2 Alpha and Image J (accuracy up to 0.01 mm without damaging the unique fetal material) and statistical methods.
Results
The superior gluteal nerve innervates three physiologically significant muscles of the lower limb’s girdle: gluteus medius muscle, gluteus minimus muscle and tensor fasciae latae muscle. In this study the width of the main trunk of the nerve supplying each of these three muscles was measured and the position of the nerve after leaving the suprapiriform foramen was observed. A unique typology of the distribution of branches of the examined nerve has been created. The bushy and tree forms were distinguished. There was no correlation between the occurrence of tree and bushy forms with the body side (p > 0.05), but it was shown that the frequency of the occurrence of the bushy form in male fetuses is significantly higher than in female fetuses (p < 0.01). Proportional and symmetrical nerve growth dynamics were confirmed and no statistically significant sexual dimorphism was demonstrated (p > 0.05).
Conclusions
The anatomy of the superior gluteal nerve during prenatal period has been determined. We have identified two morphological forms of it. We have observed no differences between right and left superior gluteal nerve and no sexual dimorphism. The demonstrated high variability of terminal branches of the examined nerve indicates the risk of neurological complications in the case of too deep intramuscular injections and limits the range of potential surgical interventions in the gluteal region. The above research may be of practical importance, for example for hip surgery.
Collapse
Affiliation(s)
| | - Krzysztof Dudek
- Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
7
|
Kim JH, Jin ZW, Hayashi S, Murakami G, Rodríguez-Vázquez JF, Abe H. Major change in morphology of the talofibular ligaments during fetal development and growth. SURGICAL AND RADIOLOGIC ANATOMY : SRA 2022; 44:1121-1129. [PMID: 35857084 DOI: 10.1007/s00276-022-02987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND PURPOSE Ankle sprain is often attributed to damage of the anterior and posterior talofibular ligaments (ATFL, PTFL). We compared the morphology of these ligaments in fetuses of different gestational ages (GAs) with the horizontal configuration in adults. MATERIALS AND METHODS Histological sections of unilateral ankles were examined in 22 fetuses, 10 at GA of 9-12 weeks and 12 at GA of 26-39 weeks. RESULTS At a GA of 9 to 10 weeks, the ATFL and PTFL consisted of horizontally running straight fibers. The initial ATFL appeared as a thickening of the capsule of the talocrural joint, although the initial PTFL was distant from this joint. Until a GA of 12 weeks, the talus and fibula were separated by an expanding joint cavity. Thus, the initial horizontal ligaments were "pulled" in a distal direction. The distal parts of the ligaments consisted of thin collagenous fibers that had an irregular array, whereas the short proximal parts had thick fibers and a horizontal array. In near-term fetuses, the ligaments contained no horizontal fibers. The ATFL had a wavy course around the thick synovial fold, and was exposed to the joint cavity along the entire course; the distal part was thinner than the proximal part. The PTFL was bulky and consisted of fibers with an irregular array. Therefore, the morphology in a near-term fetus was quite different from that in adults. CONCLUSION The horizontal and straight composite ankle fibers in adults apparently result from postnatal reconstruction, depending on mechanical demand.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Geunji-ro 20, Deukjin-gu, Jeonju, 54907, Korea.
| | - Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Shogo Hayashi
- Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Gen Murakami
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | | - Hiroshi Abe
- Emeritus Professor of Akita University School of Medicine, Akita, Japan
| |
Collapse
|
8
|
Kanehira C, Yamamoto M, Hirouchi H, Ishizuka S, Sakiyama K, Higa K, Murakami G, Abe S. Tendinous annulus of Zinn for a common origin of the extraocular rectus muscles: a histological study of the orbital apex from donated elderly cadavers. Anat Sci Int 2022; 97:369-379. [PMID: 35157253 DOI: 10.1007/s12565-022-00649-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
The medial, inferior, lateral, and superior rectus muscles (MR, IR, LR, SR), levator palpebrae superioris (LPS), and superior oblique muscle (SO) seem to originate from the tendinous annulus of Zinn, ring-like fibrous tissue crossing the bony orbital fissure. We observed the histological annulus structure using semi-serial histological sections of the orbital apex from 30 elderly donated cadavers. Nearly frontal sections demonstrated a ring-like fibrous structure (a candidate annulus) connecting or embedding four rectus muscles. The candidate annulus did not contain the LPS and SO, and, in the anterior side, the latter muscles originated from the optic canal opening. Far posterior to the annulus, there was a common tendon of the MR, IR, and LR attached to the infero-medial wall of the bony orbital fissure. At the superior part, the annulus is tightly attached to the optic nerve sheath and the periosteum. Sagittal (or Horizontal) sections clearly exhibited parts of the annulus at the MR (SR) origin. Both sagittal and horizontal sections displayed (1) the common origin of the three rectus muscles near the oculomotor nerve in the bony fissure and (2) an accessory, independent muscle bundle of the MR originating from the superomedial margin of the optic canal near the origins of the LPS or SO. Consequently, the so-called tendinous annulus appeared not to provide origins of all six muscles.
Collapse
Affiliation(s)
| | | | | | | | - Koji Sakiyama
- Division of Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyaki-dai, Sakado-shi, Saitama, 350-0283, Japan
| | - Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Sugano, Ichikawa, Chiba, 5-11-13, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.,Division of Internal Medicine, Cupid Clinic, Iwamizawa, Hokkaido, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
9
|
Nyland J, Krupp R, Givens J, Caborn D. Trunk and lower extremity long-axis rotation exercise improves forward single leg jump landing neuromuscular control. Physiother Theory Pract 2021; 38:2689-2701. [PMID: 34602021 DOI: 10.1080/09593985.2021.1986871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) injuries often involve sudden single leg loading with directional changes. Trunk and lower extremity (LE) load transfer and muscle power are directly coupled during these movements. The effect of trunk and LE long-axis rotation training on forward single leg drop jump landing and stabilization (FSLDJLS) was studied. METHODS Using block randomization (gender), 36 (18 men, 18 women) subjects were assigned to experimental (nine, 20 min exercise sessions) and control groups with equal subject number. Ground reaction force (1000 Hz), kinematic (60 Hz) and LE EMG (1000 Hz) data were synchronously collected. Statistical analysis compared pre- and post-test neuromuscular control mean change differences (MCD), and hip flexion-LE peak EMG % maximum volitional isometric contraction (%MVIC) (expressed as decimal equivalents), mean change difference (MCD) relationships. RESULTS The experimental group had greater landing knee flexion (3.5 ± 3.6° vs. -0.4 ± 3.3°, p = .002) MCD, greater dynamic LE stiffness after landing (0.09 ± 0.14 vs. -0.11 ± 0.14, p = .001) MCD, and increased gluteus maximus (GMAX) (0.20 ± 0.39%MVIC vs. -0.23 ± 0.46%MVIC, p = .006) and gluteus medius (GMED) EMG amplitude (0.22 ± 0.31 vs. -0.07 ± 0.36%MVIC, p = .018) MCD. This group also had decreased GMAX (-166.5 ± 403.6 ms vs. 89.3 ± 196 ms, p = .025), GMED (-75.9 ± 126.8 ms vs. 131.2 ± 207.1 ms, p = .002) and vastus lateralis (-109.1 ± 365 ms vs. 205.5 vs. 510 ms, p = .04) activation duration MCD. More experimental group subjects had increased landing knee flexion MCD (15/18 vs. 8/18, p = .015), increased dynamic LE stiffness MCD (15/18 vs. 2/18, p < .0001) and increased GMAX (15/18 vs. 7/18, p = .006) and GMED (17/18 vs. 10/18, p = .007) EMG amplitude MCD, and reduced GMAX (12/18 vs. 6/18, p = .046), GMED (11/18 vs. 5/18, p = .044), rectus femoris (12/18 vs. 6/18, p = .046), and vastus lateralis (13/18 vs. 7/18, p = .044) EMG activation duration MCD. Only the experimental group displayed significant relationships between landing and peak hip flexion and peak LE EMG amplitude MCD. CONCLUSION Increased dynamic LE stiffness, increased hip muscle EMG amplitude and decreased hip and knee muscle activation duration MCD in the experimental group suggests improved LE neuromuscular control.
Collapse
Affiliation(s)
- John Nyland
- Kosair Charities College of Health and Natural Sciences, Spalding University, Louisville, Kentucky, USA.,Department of Orthopaedic Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Ryan Krupp
- Department of Orthopaedic Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Justin Givens
- Department of Orthopaedic Surgery, University of Louisville, Louisville, Kentucky, USA
| | - David Caborn
- Department of Orthopaedic Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Jin ZW, Kim JH, Suzuki D, Sugai N, Murakami G, Abe H, Rodríguez-Vázquez JF. Relationship of the fabella with the origins of the plantaris and gastrocnemius lateral head muscles in late-term fetuses: a histological study. Anat Cell Biol 2021; 54:270-279. [PMID: 33896799 PMCID: PMC8225468 DOI: 10.5115/acb.20.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022] Open
Abstract
Previous studies of midterm fetuses indicated that a cartilaginous fabella appeared to be embedded in the plantaris (PL), and was fused with the gastrocnemius lateral head (GL). We re-examined the topographical anatomy of the fabella or its analogue (a tight fibrous mass) originating in the GL and/or PL by evaluating histological sections of the unilateral knees of 15 late-term fetuses. Regardless of whether the cartilaginous fabella was present (6 fetuses) or absent (9 fetuses), the origins of the PL and GL muscles each had three parts. In each fetus, the fabella or its analogue was embedded in a thick common tendinous origin of the GL and PL. PL1 (whose origin is similar to that of the adult PL) originated from the femoral condyle immediately above the common tendon; PL2 originated from the posteromedial aspect of the fabella or its analogue; and PL3 originated from the inferior aspect of the fabella or its analogue. The muscle fibers of PL1, PL2, and PL3 joined to provide a thick plantaris. GL1 (which is adjacent to PL2) originated from the common tendon in the superior side of the fabella or its analogue and GL2 originated from the inferior side of the fabella or its analogue. GL1 and GL2 joined to provide a thick bundle, whereas GL3 (located far below the fabella or its analogue) originated from the posterior surface aponeurosis. Therefore, drastic reconstruction at these muscle origins was necessary during development. Due to the strong mechanical stress from the GL and the space-occupying effect of the muscle, we hypothesize that PL2 and PL3 are degraded or absorbed into the GL1 and GL2 during the postnatal period, so that the remaining PL1 was likely the remaining PL in adults.
Collapse
Affiliation(s)
- Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Korea
| | - Daisuke Suzuki
- Divison of Common Curriculum, Hokkaido Chitose College of Rehabilitation, Chitose, Japan
| | - Namiko Sugai
- Divison of Rehabilitation, Hitsujigaoka Hospital of Orthopedics, Sapporo, Japan
| | - Gen Murakami
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Hokkaido, Japan
| | - Hiroshi Abe
- Emeritus Professor of Akita University School of Medicine, Akita, Japan
| | | |
Collapse
|
11
|
Sato T, Kim JH, Cho KH, Hayashi S, Rodríguez-Vázquez JF, Murakami G. Fetal development and growth of the human erector spinae with special reference to attachments on the surface aponeurosis. Surg Radiol Anat 2021; 43:1503-1517. [PMID: 34059927 DOI: 10.1007/s00276-021-02759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The longissimus (LO) and iliocostalis (IC) of adults consist of myofibers extending from the superolateral to the inferomedial side of the back and, because of the same course, they are fused in the thoracolumbar region. The LO also has a medial attachment to the long myofibers of the transversospinalis (TS) showing a course from the superomedial to the inferolateral side. However, there is apparently no information regarding when and how these similar longitudinal muscles differentiate from a cluster of dorsomedial myotome cells. METHODS We examined sagittal and horizontal sections of the trunks of 39 human embryos and fetuses (18-330 mm crown-rump length). RESULTS At 6-7 weeks gestational age (GA), the surface aponeurosis appeared prior to and independent of the thoracolumbar fascia. At 6-9 weeks GA, the LO myofibers had a postero-inferior course, from the transverse process to the initial aponeurosis, whereas the TS myofibers had a postero-superior course, from a lateral extension of the intertransverse ligament to the aponeurosis. However, the IC consisted of supracostal longitudinal myofibers and was distant from the LO until 12 weeks GA. Because of the lack of ligamentous attachments and ribs, myofibers of the TS, LO, and IC took a similar inferior course in the lumbar region. When the early TS was represented by the transverso-aponeurotic muscle, consequently, the LO corresponded to the aponeuro-transversal muscle and was independent from the IC. CONCLUSION The classical model of TS and LO development does not recognize the essential role of the aponeurosis identified here.
Collapse
Affiliation(s)
- Tatsuo Sato
- Emeritus Professor of Tokyo Medical and Dental University, Tokyo, Japan
| | - Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Geunji-ro 20, Deokjin-gu, Jeonju, Jeonbuk, 54907, Republic of Korea.
| | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | - Shogo Hayashi
- Department of Anatomy, School of Medicine, International University of Health and Welfare, Narita, Japan
| | | | - Gen Murakami
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Hokkaido, Japan
| |
Collapse
|
12
|
Fetal development of the thoracolumbar fascia with special reference to the fascial connection with the transversus abdominis, latissimus dorsi, and serratus posterior inferior muscles. Surg Radiol Anat 2021; 43:917-928. [PMID: 33438110 DOI: 10.1007/s00276-020-02668-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The three-layered thoracolumbar fascia (TLF) encapsulates the erector spinae and the quadratus lumborum and has been a major concern for physical therapists. However, knowledge of its prenatal development and growth is limited. METHODS Histological examination of 25 embryos and fetuses at 6-37 weeks (CRLs, 15-310 mm). RESULTS At the posterior end, the abdominal muscles continued toward an initial posterior layer of the TLF (pTLF) at 6 weeks, but the connection became narrow and limited to the obliquus externus aponeurosis until near term. The middle layer of the TLF (mTLF) appeared as a posterior continuation of the transversalis fascia at 9 weeks and, depending on a mechanical demand for the vertebral column extension near term, it grew as a thick intermuscular septum between the iliocostalis and quadratus lumborum. Thus, the mTLF lateral end changed from the abdominal wall to the back or pTLF. The serratus posterior inferior originated from the pTLF after 9 weeks, but a connection of the latissimus dorsi with the fascia was established much later. Near term, the gluteus maximus was attached to an aponeurosis covering the multifidus behind the sacrum. Therefore, the pTLF extended to cover the gluteal muscles. CONCLUSION We rejected the hypothesis that the mTLF develops as a marginal tissue between the primitive epaxial and hypaxial muscles. This study seemed to be the first report showing a fact that, within prenatal life, a drastic change is likely to occur in interfascial connections and their topographical relation to muscles; the TLF might be the best sample.
Collapse
|
13
|
Kitamura K, Cho KH, Yamamoto M, Ishii M, Murakami G, Rodríguez-Vázquez JF, Abe SI. Suboccipital myodural bridges revisited: Application to cervicogenic headaches. Clin Anat 2019; 32:914-928. [PMID: 31116454 DOI: 10.1002/ca.23411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
Abstract
There seems to be no complete demonstration of the suboccipital fascial configuration. In 30 human fetuses near term, we found two types of candidate myodural bridge: (1) a thick connective tissue band running between the rectus capitis posterior major and minor muscles (rectus capitis posterior major [Rma], rectus capitis posterior minori [Rmi]; Type 1 bridge; 27 fetuses); and (2) a thin fascia extending from the upper margin of the Rmi (Type 2 bridge; 20 fetuses). Neither of these bridge candidates contained elastic fibers. The Type 1 bridge originated from: (1) fatty tissue located beneath the semispinalis capitis (four fetuses); (2) a fascia covering the multifidus (nine); (3) a fascia bordering between the Rma and Rmi or lining the Rma (13); (4) a fascia covering the inferior aspect of the Rmi (three); and (5) a common fascia covering the Rma and obliquus capitis inferior muscle (nine). Multiple origins usually coexisted in the 27 fetuses. In the minor Type 2 bridge, composite fibers were aligned in the same direction as striated muscle fibers. Thus, force transmission via the thin fascia seemed to be effective along a straight line. However, in the major Type 1 bridges, striated muscle fibers almost always did not insert into or originate from the covering fascia. Moreover, at and near the dural attachment, most composite fibers of Type 1 bridges were interrupted by subdural veins and dispersed around the veins. In newborns, force transmission via myodural bridges was likely to be limited or ineffective. The postnatal growth might determine a likely connection between the bridge and headache. Clin. Anat. 32:914-928, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Jeonbuk, South Korea
| | | | | | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.,Division of Internal Medicine, Jikoukai Home Visits Clinic, Sapporo, Japan
| | | | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|