1
|
Lahmamsi H, Ananou S, Lahlali R, Tahiri A. Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiol (Praha) 2024; 69:465-489. [PMID: 38393576 DOI: 10.1007/s12223-024-01146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
Collapse
Affiliation(s)
- Haitam Lahmamsi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Samir Ananou
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
| | - Rachid Lahlali
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| | - Abdessalem Tahiri
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
2
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
3
|
Tenea GN, Anrango Cajas B, Carlosama Sanchez B. Inhibitory-like Substances Produced by Yeasts Isolated from Andean Blueberries: Prospective Food Antimicrobials. Foods 2023; 12:2435. [PMID: 37444173 DOI: 10.3390/foods12132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Natural agents from microorganisms have emerged as suitable options to replace chemical preservatives in foods. In this study, the antibacterial activity of cell-free supernatant (CFS) from five native yeasts (Saccharomyces cerevisiae Lev6 and Lev30, C. pseudointermedia Lev8, Candida intermedia Lev9, C. parapsilosis Lev15) and the reference S. boulardi SSB, was evaluated against some indicator food pathogens. The generation of antimicrobials was reliant on strain-, and sugar-supplemented media, which supported yeast growth established at 30 °C and 200 rpm for 48 h. Treatment with proteinase K and catalase was unable to completely abolish the inhibitory effect, indicating that the active components are likely complex combinations of acids, proteins, hydrogen peroxide, and other metabolites. Although there was no impact on Listeria monocytogenes, exposure to CFS and extracellular fractions obtained through precipitation with methanol (PPm) at 120 °C for 60 min significantly (p < 0.05) increased the inhibitory activity against Escherichia coli, Salmonella enterica, Kosakonia cowanii, and Staphylococcus aureus, indicating that the inhibitory activity was stimulated by heat. Likewise, a synergistic inhibitory action against Listeria was obtained following the pretreatment of PPm with EDTA (ethylenediaminetetraacetic acid). These activities were yeast strain-dependent, with Lev6, Lev8, and Lev30 showing the highest activity. In addition, a heat-stable low-molecular-mass molecule under 5 kDa was detected in Lev30. Further research is required to evaluate the mode of action and characterize the composition of the released molecules in the CFS in order to develop a novel biocontrol agent based on yeasts.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| | - Blanca Anrango Cajas
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| | - Bladimir Carlosama Sanchez
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| |
Collapse
|
4
|
Tenea GN, Gonzalez GL, Moreno JL. Probiotic Characteristics and Antimicrobial Potential of a Native Bacillus subtilis Strain Fa17.2 Rescued from Wild Bromelia sp. Flowers. Microorganisms 2022; 10:microorganisms10050860. [PMID: 35630306 PMCID: PMC9145066 DOI: 10.3390/microorganisms10050860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
In the present study, we identified the Bacillus subtilis strain annotated Fa17.2 isolated from Bromelia flower inflorescences collected from the subtropical humid mesothermal region, Santo Domingo de Los Tsachilas Province, Ecuador. The probiotic capacity and antimicrobial potential against four foodborne pathogens were assessed. The cell culture of Fa17.2 is highly resistant to synthetic gastric acid (pH 2.5, 3.0, and 3.5), bile salts (0.3%), tolerating different sodium chloride concentrations (1, 3, and 5%), and growth conditions (15 °C and 45 °C), suggesting its potential probiotic features. The isolate showed no antibiotic resistance and was considered safe as no hemolysis was detected on sheep blood agar. The optimum medium for bacterial growth and the release of antimicrobial compounds was MRS with 10% glucose. The active components released in the neutralized crude extract (NCE) were insensitive to organic solvents, surfactants, and nonproteolytic enzymes and sensitive to proteolytic enzymes suggesting their proteinaceous nature. The antimicrobial activity was enhanced by heat and maintained active over a wide range of pH (2.0–8.0). Moreover, the crude extract (CE) showed inhibitory activity against several Gram-negative and Gram-positive bacteria. The molecular weight of partially purified precipitated bacteriocin-like substances (BLISs) was about 14 kDa in 20% Tricine-SDS-PAGE. The CE obtained from Fa17.2 inhibits the growth of four foodborne pathogens, Staphylococcus aureus, Escherichia coli, Kosaconia cowanii, and Shigella dysenteriae, which implies its potential as an antimicrobial producer strain.
Collapse
|
5
|
Inhibition of E. coli and bio-preservation of ground beef by Lactobacillus, black pepper extract and EDTA. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Purification and antibacterial properties of a novel bacteriocin against Escherichia coli from Bacillus subtilis isolated from blueberry ferments. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Tenea GN, Ortega C. Genome Characterization of Lactiplantibacillus plantarum Strain UTNGt2 Originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial Peptides from Safety to Potential Applications. Antibiotics (Basel) 2021; 10:antibiotics10040383. [PMID: 33916842 PMCID: PMC8066128 DOI: 10.3390/antibiotics10040383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
The genome characterization of the Lactiplantibacillus plantarum strain UTNGt2, isolated from wild copoazu or white cacao (Theobroma grandiflorum), is described. A total of 31 contigs is assembled with a total length of 3,264,448 bases, with all contigs matching the core genome of different groups in the database. The genome size is 3,540,752 bases with GC content of 44.53% and the genome repeat sequences constitute around 457,386 bases of the assembly. The UTNGt2 matches the Lactiplantibacillus plantarum genome with 99% identity. The genome contains 3115 genes, 3052 protein-coding genes, assigned with the EggNOG database. On the basis of the results, 745 proteins are classified with an unknown function, from which 128 proteins have no match in the BLASTN database. It also contains 57 tRNAs, 5 copies of 5S rRNA, and 1 copy of tmRNA. Based on gene prediction and annotation results, 9.4% of proteins are involved in carbohydrate transport and metabolism and 8.46% in transcription, 2.36% are responsible for defense mechanisms, 0.5% are responsible for the biosynthesis of secondary metabolites, transport, and catabolism, while 25.11% have an unknown function. The genome revealed the presence of genes involved in riboflavin and folate production, the presence of CRISPR/Cas genes, phage sequences, the absence of acquired antibiotics resistance genes, virulence, and pathogenic factors, suggesting that UTNGt2 is a safe strain. Its highly antimicrobial capacity is related to the presence of two bacteriocin clusters (class IIc) of the sactipeptide class (contig 4) and plantaricin E class (contig 22), as detected by the BAGEL 4 webserver. Several RiPP-like peptides (non-bactericidal ribosomally produced and post-translationally modified peptides), polyketides (PKs), and terpenes were predicted. Whole-genome sequencing analysis revealed that the UTNGt2 strain has diverse bacteriocins with a high inhibitory capacity, thus it is a bacteriocinogenic strain. Considering the safety profile, UTNGt2 is a nonpathogenic, nonvirulent strain with valuable biotechnological traits and can be further exploited for its probiotic and antimicrobial potential in the food industry or as a potential producer strain of antimicrobial peptides as an alternative to conventional antibiotics.
Collapse
|
8
|
Peptide Extracts from Native Lactic Acid Bacteria Generate Ghost Cells and Spheroplasts upon Interaction with Salmonella enterica, as Promising Food Antimicrobials. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6152356. [PMID: 33083475 PMCID: PMC7559518 DOI: 10.1155/2020/6152356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
Protecting foods from contamination applying peptides produced by lactic acid bacteria is a promising strategy to increase the food quality and safety. Interacting with the pathogen membranes might produce visible changes in shape or cell wall damage. Previously, we showed that the peptides produced by Lactobacillus plantarum UTNGt2, Lactobacillus plantarum UTNCys5-4, and Lactococcus lactis subsp. lactis UTNGt28 exhibit a broad spectrum of antibacterial activity against several foodborne pathogens in vitro. In this study, their possible mode of action against the commensal microorganism Salmonella enterica subsp. enterica ATCC51741 was investigated. The target membrane permeability was determined by detection of beta-galactosidase release from ONPG (o-nitro-phenyl-L-D-galactoside) substrate and changes in the whole protein profile indicating that the peptide extracts destroy the membrane integrity and may induce breaks in membrane proteins to some extent. The release of aromatic molecules such as DNA/RNA was detected after the interaction of Salmonella with the peptide extract. Transmission electronic microscopy (TEM) micrographs depicted at least four simultaneous secondary events after the peptide extract treatment underlying their antimicrobial actions, including morphological alterations of the membrane. Spheroplast and filament formation, vacuolation, and DNA relaxation were identified as the principal events from the Gt2 and Cys5-4 peptide extracts, while Gt28 induced the formation of ghost cells by release of cytoplasmic content, filaments, and separation of cell envelope layers. Gel retarding assays indicate that the Gt2 and Gt28 peptide extracts are clearly binding the Salmonella DNA, while Cys5-4 partially interacted with Salmonella genomic DNA. These results increased our knowledge about the inhibitory mechanism employed by several peptide extracts from native lactic acid bacteria against Salmonella. Further, we shall develop peptide-based formulation and evaluate their biocontrol effect in the food chains.
Collapse
|
9
|
Linares-Morales JR, Cuellar-Nevárez GE, Rivera-Chavira BE, Gutiérrez-Méndez N, Pérez-Vega SB, Nevárez-Moorillón GV. Selection of Lactic Acid Bacteria Isolated from Fresh Fruits and Vegetables Based on Their Antimicrobial and Enzymatic Activities. Foods 2020; 9:foods9101399. [PMID: 33023126 PMCID: PMC7599564 DOI: 10.3390/foods9101399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Lactic acid bacteria (LAB) are an important source of bioactive metabolites and enzymes. LAB isolates from fresh vegetable sources were evaluated to determine their antimicrobial, enzymatic, and adhesion activities. A saline solution from the rinse of each sample was inoculated in De Man, Rogosa and Sharpe Agar (MRS Agar) for isolates recovery. Antimicrobial activity of cell-free supernatants from presumptive LAB isolates was evaluated by microtitration against Gram-positive, Gram-negative, LAB, mold, and yeast strains. Protease, lipase, amylase, citrate metabolism and adhesion activities were also evaluated. Data were grouped using cluster analysis, with 85% of similarity. A total of 76 LAB isolates were recovered, and 13 clusters were formed based on growth inhibition of the tested microorganisms. One cluster had antimicrobial activity against Gram-positive bacteria, molds and yeasts. Several LAB strains, PIM4, ELO8, PIM5 and CAL14 strongly inhibited the growth of L. monocytogenes and JAV15 and TOV9 strongly inhibited the growth of F. oxysporum. Based on enzymatic activities, 5 clusters were formed. Seven isolates hydrolyzed starch, 46 proteins, 14 lipids, and 36 metabolized citrate. LAB isolates with the best activities were molecularly identified as Leuconostoc mesenteroides, Enterococcus mundtii and Enterococcus faecium. Overall, LAB isolated from vegetables showed potential technological applications and should be further evaluated.
Collapse
|
10
|
Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Sci Rep 2020; 10:8560. [PMID: 32444860 PMCID: PMC7244708 DOI: 10.1038/s41598-020-65587-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Fresh produce vegetables are colonized by different bacterial species, some of which are antagonistic to microbes that cause postharvest losses. However, no comprehensive assessment of the diversity and composition of bacteria inhabiting surfaces of fresh pepper plants grown under different conditions has been conducted. In this study, 16S RNA amplicon sequencing was used to reveal bacterial communities inhabiting the surfaces of red and green pepper (fungicides-treated and non-fungicides-treated) grown under hydroponic and open field conditions. Results revealed that pepper fruit surfaces were dominated by bacterial phylum Proteobacteria, Firmicutes, Actinobacteria, and, Bacteroidetes. The majority of the bacterial operation taxonomic units (97% similarity cut-off) were shared between the two habitats, two treatments, and the two pepper types. Phenotypic predictions (at phylum level) detected a high abundance of potentially pathogenic, biofilm-forming, and stress-tolerant bacteria on samples grown on open soils than those from hydroponic systems. Furthermore, bacterial species of genera mostly classified as fungal antagonists including; Acinetobacter, Agrobacterium, and Burkholderia were the most abundant on the surfaces. These results suggest that peppers accommodate substantially different bacterial communities with antagonistic activities on their surfaces, independent of employed agronomic strategies and that the beneficial bacterial strains maybe more important for peppers established on open fields, which seems to be more vulnerable to abiotic and biotic stresses.
Collapse
|
11
|
Inhibitory Substances Produced by NativeLactobacillus plantarumUTNCys5-4 Control Microbial Population Growth in Meat. J FOOD QUALITY 2019. [DOI: 10.1155/2019/9516981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microbial contamination is the cause of extensive economic loss in the food sector. Previously, the wide-range antimicrobial capacity of inhibitory substances secreted by theLactobacillus plantarumUTNCys5-4 strain was demonstratedin vitro; however, its mechanism of action in the food matrix remains unclear. This study was aimed to evaluate the effect of antimicrobials produced by the Cys5-4 strain in raw meat applied as pure cell cultures, cell-free supernatant (CFS), and partially purified peptides. The bacteriological results indicated the presence of commensal microbes exhibiting resistance to several antibiotics in meat samples purchased from the local market. Dipping solutions containing antimicrobial substances produced by Cys5-4 resulted in a decrease by 1.91,1.69, and 1.55 log10in cell counts upon addition of CFS, peptides and respectively pure cell culture in raw meat at day 9 of storage with refrigeration. The microbial population was maintained in the untreated meat samples during storage. An increase in pH and a concentration of released ammonia was detected in nontreated meat, indicating protein degradation. The Cys5-4 peptides exerted their bacteriolytic mode of action inducing damage in the cell membrane of the target bacteria, allowing the leaching of DNA/RNA content. The results indicate that coating meat with CFS containing Cys5-4 is a promising approach to protect against further contamination by microorganism spoilage, as well as an alternative for increasing the shelf life of raw meat.
Collapse
|
12
|
Kaktcham PM, Foko Kouam EM, Tchabou Tientcheu ML, Temgoua JB, Wacher C, Zambou Ngoufack F, Pérez-Chabela MDL. Nisin-producing Lactococcus lactis subsp. lactis 2MT isolated from freshwater Nile tilapia in Cameroon: Bacteriocin screening, characterization, and optimization in a low-cost medium. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Tenea GN, Lara MI. Antimicrobial compounds produced by Weissella confusa Cys2-2 strain inhibit Gram-negative bacteria growth. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1561520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gabriela N. Tenea
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Ecuador
| | - Mauricio Israel Lara
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
14
|
Tenea GN, Hurtado P, Ortega C. Inhibitory Effect of Substances Produced by Native Lactococcus lactis Strains of Tropical Fruits towards Food Pathogens. Prev Nutr Food Sci 2018; 23:260-268. [PMID: 30386755 PMCID: PMC6195891 DOI: 10.3746/pnf.2018.23.3.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
The use of peptides produced by lactic acid bacteria (LAB) as antimicrobial agents in food emerged from the increasing need of replacing chemicals with natural substances to ensure their safety and quality. A total of 30 LAB belonging to the genus Lactococcus sp. (10) and Enterococcus sp. (20) were isolated from native fruits of Ecuador subtropical rainforest. Among Lactococcus species, the isolates assigned Gt28, Gt29, and Ella8, identified as Lactococcus lactis subsp. lactis with 99% identity, showing highly inhibitory potential against four food pathogens were further characterized. The treatment of cell-free supernatant with proteolytic enzymes indicated the protein nature of released components, which displayed a broad antimicrobial activity against Gram-positive and -negative bacteria. Polymerase chain reaction analysis indicated the presence of lacticin 3147 gene in all isolates, lactococcin M gene in Gt28 and Gt29 but not in Ella8 and lactococcin A gene in Gt28 only. The antimicrobial activity was not linked to the presence of structural nisin gene as no amplification product was obtained. Treatment of Salmonella enterica ATCC 51741 and Escherichia coli ATCC 25922 at both vegetative and exponential phase of growth with the cell-free supernatant of Gt28 resulted in complete inactivation upon 3 h suggesting its bactericidal mode of action. An increment on inhibitory activity occurred when partial purified bacteriocin Gt28 was combined with ethylenediaminetetraacetic acid rather than bacteriocin only, indicating that the cells were sensitized in vitro by the chelator agent acting synergistically to induce the killing of pathogenic cells.
Collapse
Affiliation(s)
- Gabriela Nicoleta Tenea
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Imbabura 199, Ecuador
| | - Pamela Hurtado
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Imbabura 199, Ecuador
| | - Clara Ortega
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Imbabura 199, Ecuador
| |
Collapse
|
15
|
Sturino JM. Literature-based safety assessment of an agriculture- and animal-associated microorganism: Weissella confusa. Regul Toxicol Pharmacol 2018; 95:142-152. [PMID: 29567328 DOI: 10.1016/j.yrtph.2018.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
Abstract
Although Weissella confusa was established as a species over 25 years ago, it has been understudied until very recently. Several independent observations have driven the recent interest in this important microorganism. First, this Leuconostoc-like species of Lactic Acid Bacteria is associated with agricultural environments, many spontaneous food fermentations-especially carbohydrate-rich vegetable fermentations-and silage. Second, Weissella confusa are members of the autochthonous microbiota of healthy humans and livestock. Third, Weissella confusa-in a strain-specific fashion-are postulated to be good candidates for the development of novel direct-fed microbial products. Fourth, Weissella confusa-in a strain-specific fashion-have been described as opportunistic pathogens-especially in immunocompromised individuals. Last, a distantly related species (Weissella ceti) is the etiologic agent of weissellosis, a disease that affects farmed fish that are important for commercial aquaculture. The purpose of this literature-based safety assessment is to consolidate findings from primary research related to Weissella confusa and its natural associations with and effects on animals, humans, and their agricultural environments. Based on these assessments, it is reasonable to conclude that many Weissella confusa are safe for use in direct-fed microbial products for poultry.
Collapse
|