1
|
Al-Fakhrany OM, Elekhnawy E. Helicobacter pylori in the post-antibiotics era: from virulence factors to new drug targets and therapeutic agents. Arch Microbiol 2023; 205:301. [PMID: 37550555 PMCID: PMC10406680 DOI: 10.1007/s00203-023-03639-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Helicobacter pylori is considered one of the most prevalent human pathogenic microbes globally. It is the main cause of a number of gastrointestinal ailments, including peptic and duodenal ulcers, and gastric tumors with high mortality rates. Thus, eradication of H. pylori is necessary to prevent gastric cancer. Still, the rise in antibiotic resistance is the most important challenge for eradication strategies. Better consideration of H. pylori virulence factors, pathogenesis, and resistance is required for better eradication rates and, thus, prevention of gastrointestinal malignancy. This article is aimed to show the role of virulence factors of H. pylori. Some are involved in its survival in the harsh environment of the human gastric lumen, and others are related to pathogenesis and the infection process. Furthermore, this work has highlighted the recent advancement in H. pylori treatment, as well as antibiotic resistance as a main challenge in H. pylori eradication. Also, we tried to provide an updated summary of the evolving H. pylori control strategies and the potential alternative drugs to fight this lethal resistant pathogen. Recent studies have focused on evaluating the efficacy of alternative regimens (such as sequential, hybrid, concomitant treatment, vonoprazan (VPZ)-based triple therapy, high-dose PPI-amoxicillin dual therapy, probiotics augmented triple therapy, or in combination with BQT) in the effective eradication of H. pylori. Thus, innovating new anti-H. pylori drugs and establishing H. pylori databanks are upcoming necessities in the near future.
Collapse
Affiliation(s)
- Omnia Momtaz Al-Fakhrany
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
2
|
Qing L, Li S, Yan S, Wu C, Yan X, He Z, Chen Q, Huang M, Shen C, Wang S, Cao M, Zhao J. Anti- Helicobacter pylori activity of Fagopyrum Tataricum (L.) Gaertn. Bran flavonoids extract and its effect on Helicobacter pylori-induced inflammatory response. Food Sci Nutr 2023; 11:3394-3403. [PMID: 37324920 PMCID: PMC10261744 DOI: 10.1002/fsn3.3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Tartary buckwheat flavonoids have a variety of effects on anti-inflammatory, anti-oxidation, as well as anti-tumor and are valuable for academic research and industrial application. Helicobacter pylori (H. pylori) infection is associated with various gastrointestinal diseases in humans, and an increase in its resistance has led to the failure of many drugs. In this study, we quantified the main monomers of tartary buckwheat (Fagopyrum Tataricum (L.) Gaertn.) bran flavonoids extract through HPLC analysis. Then, we investigated the anti-H. pylori activity and the effect on cell inflammation of tartary buckwheat flavonoids extract and its four main flavonoid monomers (rutin, quercetin, kaempferol, and nicotiflorin). The results showed that tartary buckwheat flavonoids extract and its four flavonoid monomers could inhibit the growth of H. pylori and down-regulate the expression of proinflammatory factors IL-6, IL-8, and CXCL-1 in H. pylori-induced GES-1 cells. Moreover, we also confirmed that tartary buckwheat flavonoids extract could reduce the expression of virulence factor gene of H. pylori. In summary, tartary buckwheat can alleviate the cell inflammation induced by H. pylori, which provides a theoretical basis for the development of tartary buckwheat healthcare products.
Collapse
Affiliation(s)
- Liting Qing
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life SciencesSichuan University610064ChengduChina
| | - Shu Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life SciencesSichuan University610064ChengduChina
- Luzhou Pinchuang Technology Co., Ltd. (National Engineering Research Center of Solid‐state Brewing)646000LuzhouChina
| | - Shiying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life SciencesSichuan University610064ChengduChina
| | - Chengmeng Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life SciencesSichuan University610064ChengduChina
| | - Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life SciencesSichuan University610064ChengduChina
| | - Zongyu He
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life SciencesSichuan University610064ChengduChina
| | - Qian Chen
- Key Laboratory of Irradiation Preservation of Sichuan ProvinceSichuan Institute of Atomic EnergySichuanChengduChina
| | - Min Huang
- Key Laboratory of Irradiation Preservation of Sichuan ProvinceSichuan Institute of Atomic EnergySichuanChengduChina
| | - Caihong Shen
- Luzhou Pinchuang Technology Co., Ltd. (National Engineering Research Center of Solid‐state Brewing)646000LuzhouChina
| | - Songtao Wang
- Luzhou Pinchuang Technology Co., Ltd. (National Engineering Research Center of Solid‐state Brewing)646000LuzhouChina
| | - Mei Cao
- Core Laboratory, School of MedicineSichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China610072ChengduChina
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life SciencesSichuan University610064ChengduChina
| |
Collapse
|
3
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:E27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
4
|
Shen Y, Zou Y, Chen X, Li P, Rao Y, Yang X, Sun Y, Hu H. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori. J Control Release 2020; 328:575-586. [PMID: 32946873 DOI: 10.1016/j.jconrel.2020.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
The prevalence of infections with Helicobacter pylori (H. pylori) has progressively increased worldwide, which demonstrated to be closely correlated to its biofilm formation. H. pylori biofilms protect the bacteria by significantly decreasing their sensitivity to antibiotics. Moreover, H. pylori colonizes on the gastrointestinal tract epithelium which is covered by mucus layer, acting as another barrier to prevent antibacterial agents from reaching the colonization sites. Herein, we prepared four types of versatile self-assembled nanodrugs (BD/RHL NDs) containing lipophilic alkyl berberine derivatives (BDs) and rhamnolipids (RHL) to overcome the dual obstructions of both mucus layer and biofilms. Molecular dynamics simulations estimated that the driving forces for self-assembly of BD/RHL NDs were electrostatic and hydrophobic interactions. BD/RHL NDs, characterized by appropriate size, negative charge and enhanced hydrophilicity, successfully penetrated through mucus layer without interacting with mucins. In in vitro experiments, BD/RHL NDs exhibited substantial ability to eradicate H. pylori biofilms by destroying their extracellular polymeric substances (EPS) and killing planktonic H. pylori. Furthermore, BD/RHL NDs inhibited the adherence of H. pylori on both biotic and abiotic surfaces, therefore cut off the critical step of the biofilm re-formation which was associated with the recrudescence of infections. In an H. pylori-infected mice model, C10-BD/RHL NDs group showed 40 folds less remnant H. pylori and greater mucosal protection compared with the conventional clinical triple therapy. In conclusion, BD/RHL NDs could penetrate through mucus layer and effectively eradicate H. pylori biofilms in vitro and in vivo, providing a novel strategy for clinical treatment of biofilm-related infections.
Collapse
Affiliation(s)
- Yuanna Shen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yiqing Zou
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Xiaonan Chen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Pengyu Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yiqin Rao
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Xuan Yang
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yingying Sun
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Haiyan Hu
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Shafaie S, Kaboosi H, Peyravii Ghadikolaii F. Prevalence of non Helicobacter pylori gastric Helicobacters in Iranian dyspeptic patients. BMC Gastroenterol 2020; 20:190. [PMID: 32546214 PMCID: PMC7298804 DOI: 10.1186/s12876-020-01331-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non Helicobacter pylori gastric Helicobacters (NHPGHs) are associated with a range of upper gastrointestinal symptoms, histologic and endoscopic findings. For the first time in Iran, we performed a cross-sectional study in order to determine the prevalence of five species of NHPGHs in patients presenting with dyspepsia. METHODS The participants were divided into H. pylori-infected and NHPGH-infected groups, based on the rapid urease test, histological analysis of biopsies, and PCR assay of ureA, ureB, and ureAB genes. The study included 428 gastric biopsies form dyspeptic patients, who did not receive any treatment for H. pylori. The samples were collected and sent to the laboratory within two years. H. pylori was identified in 368 samples, which were excluded from the study. Finally, a total of 60 non-H. pylori samples were studied for NHPGH species. RESULTS The overall frequency of NHPGH species was 10 for H. suis (three duodenal ulcer, three gastritis, and four gastric ulcer samples), 10 for H. felis (one gastritis, three duodenal ulcer, and six gastric ulcer samples), 20 for H. salomonis (four duodenal ulcer, five gastritis, and 11 gastric ulcer samples), 13 for H. heilmannii (three gastritis, five duodenal ulcer, and five gastric ulcer samples), and 7 for H. bizzozeronii (zero gastric ulcer, two duodenal ulcer, and five gastritis samples). CONCLUSIONS Given our evidence about the possibility of involvement of NHPGHs in patients suffering from gastritis and nonexistence of mixed H. pylori infection, bacteriological testing of subjects negative for H. pylori becomes clinically relevant and important. Our findings suggest H. salomonis has the highest rate among the NHPGH species in Iranian dyspeptic patients.
Collapse
Affiliation(s)
- Shakiba Shafaie
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hami Kaboosi
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | |
Collapse
|
6
|
Youssefi M, Ghazvini K, Farsiani H, Tafaghodi M, Keikha M. A systematic review and meta-analysis of outcomes of infection with Helicobacter pylori dupA+ strains in Iranian patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Wu D, Cao M, Li N, Zhang A, Yu Z, Cheng J, Xie X, Wang Z, Lu S, Yan S, Zhou J, Peng J, Zhao J. Effect of trimethylamine N-oxide on inflammation and the gut microbiota in Helicobacter pylori-infected mice. Int Immunopharmacol 2019; 81:106026. [PMID: 31759863 DOI: 10.1016/j.intimp.2019.106026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Diet is one of the factors contributing to symptom of Helicobacter pylori (H. pylori) infection. Trimethylamine N-oxide (TMAO), a diet-related microbial metabolite, is associated with inflammatory and metabolic diseases. The aim of this study is to investigate the effects of TMAO intake on inflammation and gut microbiota composition in H. pylori-infected mice via 16S rRNA sequencing and biochemical analyses. The in vitro experiments showed that TMAO not only increased the expression of growth- and metabolism-associated genes and the urease activity of H. pylori, but increased the production of virulence factors. Moreover, TMAO intake increased the production of inflammatory markers and reduced the richness and diversity of the gut microbiota in H. pylori-infected mice. Further analysis showed that TMAO increased the relative abundance of Escherichia_Shigella in H. pylori-infected mice, which had positive correlation with the levels of LPS, CRP, and CXCL1. Collectively, our results suggest that TMAO may aggravate H. pylori-induced inflammation by increasing the viability and virulence of H. pylori and may aggravate inflammation in association with the gut microbiota in H. pylori-infected mice. This study may provide a novel insight into the mechanism for the effect of diet-derived metabolites such as TMAO on H. pylori-induced disease development.
Collapse
Affiliation(s)
- Daoyan Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Ningzhe Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Andong Zhang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Zhihao Yu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Juan Cheng
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Xiulan Xie
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Zeyu Wang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Shaofei Lu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Shiying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Jie Zhou
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Jingshan Peng
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|