Choe M, Jin SH, Kim JS, Chung CK. Propofol anesthesia-induced spatiotemporal changes in cortical activity with loss of external and internal awareness: An electrocorticography study.
Clin Neurophysiol 2023;
149:51-60. [PMID:
36898318 DOI:
10.1016/j.clinph.2023.01.020]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE
To understand the underlying mechanism of consciousness, investigating spatiotemporal changes in the cortical activity during the induction phase of unconsciousness is important. Loss of consciousness induced by general anesthesia is not necessarily accompanied by a uniform inhibition of all cortical activities. We hypothesized that cortical regions involved in internal awareness would be suppressed after disruption of cortical regions involved in external awareness. Thus, we investigated temporal changes in cortex during induction of unconsciousness.
METHODS
We recorded electrocorticography data of 16 epilepsy patients and investigated power spectral changes during induction phase from awake state to unconsciousness. Temporal changes were assessed at 1) the start point and 2) the interval of normalized time between start and end of power change (Δ tnormalized).
RESULTS
We found that the power increased at frequencies < 46 Hz, and decreased in range of 62-150 Hz, in global channels. In temporal changes of power change, superior parietal lobule and dorsolateral prefrontal cortex started to change early, but the changes were completed over a prolonged interval, whereas angular gyrus and associative visual cortex showed a delayed change and rapid completion.
CONCLUSIONS
Loss of consciousness induced by general anesthesia results first from disrupted communication between self and external world, followed by disrupted communication within self, with decreased activities of superior parietal lobule and dorsolateral prefrontal cortex, and later, attenuated activities of angular gyrus.
SIGNIFICANCE
Our findings provided neurophysiological evidence for the temporal changes in consciousness components induced by general anesthesia.
Collapse