1
|
Hladky SB, Barrand MA. Alterations in brain fluid physiology during the early stages of development of ischaemic oedema. Fluids Barriers CNS 2024; 21:51. [PMID: 38858667 PMCID: PMC11163777 DOI: 10.1186/s12987-024-00534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchymal tissue, vasogenic oedema arises from changes in blood-brain barrier permeability, e.g. in peritumoral oedema. Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake of Na+ and Cl- and loss of K+; neuronal swelling; astrocytic uptake of Na+, K+ and anions; swelling of astrocytes; and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased [K+]isf triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial opening of tight junctions between blood-brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood-brain barrier. Oedema resolution is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood-brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain herniation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood flow, providing this can be achieved relatively quickly. One important objective of current research is to find treatments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK
| |
Collapse
|
2
|
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers (Basel) 2023; 15:5539. [PMID: 38067243 PMCID: PMC10705208 DOI: 10.3390/cancers15235539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Approximately 30% of glioma patients are able to survive beyond one year postdiagnosis. And this short time is often overshadowed by glioma-associated epilepsy. This condition severely impairs the patient's quality of life and causes great suffering. The genetic, molecular and cellular mechanisms underlying tumour development and epileptogenesis remain incompletely understood, leading to numerous unanswered questions. The various types of gliomas, namely glioblastoma, astrocytoma and oligodendroglioma, demonstrate distinct seizure susceptibility and disease progression patterns. Patterns have been identified in the presence of IDH mutations and epilepsy, with tumour location in cortical regions, particularly the frontal lobe, showing a more frequent association with seizures. Altered expression of TP53, MGMT and VIM is frequently detected in tumour cells from individuals with epilepsy associated with glioma. However, understanding the pathogenesis of these modifications poses a challenge. Moreover, hypoxic effects induced by glioma and associated with the HIF-1a factor may have a significant impact on epileptogenesis, potentially resulting in epileptiform activity within neuronal networks. We additionally hypothesise about how the tumour may affect the functioning of neuronal ion channels and contribute to disruptions in the blood-brain barrier resulting in spontaneous depolarisations.
Collapse
Affiliation(s)
- Mariia Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ekaterina Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Tikhon Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Victoria Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| |
Collapse
|
3
|
Wu W, Kang L, Liu Y, Ma X, Zhang X, Yang Y. The early stage of adult ocular dominance plasticity revealed by near-infrared optical imaging of intrinsic signals. Neuroimage 2023; 274:120122. [PMID: 37080344 DOI: 10.1016/j.neuroimage.2023.120122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Long term monocular deprivation is considered to be necessary for the induction of significant ocular dominance plasticity in the adult visual cortex. In this study, we subjected adult mice to monocular deprivation for various durations and screened for changes in ocular dominance using dual-wavelength intrinsic signal optical imaging. We found that short-term deprivation was sufficient to cause a shift in ocular dominance and that these early-stage changes were detected only by near-infrared illumination. In addition, single-unit recordings showed that these early-stage changes primarily occurred in deep cortical layers. This early-stage ocular dominance shift was abolished by the blockade of NMDA receptors. In summary, our findings reveal an early phase of adult ocular dominance plasticity and provide the dynamics of adult plasticity.
Collapse
Affiliation(s)
- Wei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Luwei Kang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yueqin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xinxin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yupeng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
4
|
Yousef Yengej DN, Ferando I, Kechechyan G, Nwaobi SE, Raman S, Charles A, Faas GC. Continuous long-term recording and triggering of brain neurovascular activity and behaviour in freely moving rodents. J Physiol 2021; 599:4545-4559. [PMID: 34438476 DOI: 10.1113/jp281514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
A minimally invasive, microchip-based approach enables continuous long-term recording of brain neurovascular activity, heart rate, and head movement in freely behaving rodents. This approach can also be used for transcranial optical triggering of cortical activity in mice expressing channelrhodopsin. The system uses optical intrinsic signal recording to measure cerebral blood volume, which under baseline conditions is correlated with spontaneous neuronal activity. The arterial pulse and breathing can be quantified as a component of the optical intrinsic signal. Multi-directional head movement is measured simultaneously with a movement sensor. A separate movement tracking element through a camera enables precise mapping of overall movement within an enclosure. Data is processed by a dedicated single board computer, and streamed from multiple enclosures to a central server, enabling simultaneous remote monitoring and triggering in many subjects. One application of this system described here is the characterization of changes in of cerebral blood volume, heart rate and behaviour that occur with the sleep-wake cycle over weeks. Another application is optical triggering and recording of cortical spreading depression (CSD), the slowly propagated wave of neurovascular activity that occurs in the setting of brain injury and migraine aura. The neurovascular features of CSD are remarkably different in the awake vs. anaesthetized state in the same mouse. With its capacity to continuously and synchronously record multiple types of physiological and behavioural data over extended time periods in combination with intermittent triggering of brain activity, this inexpensive method has the potential for widespread practical application in rodent research. KEY POINTS: Recording and triggering of brain activity in mice and rats has typically required breaching the skull, and experiments are often performed under anaesthesia A minimally invasive microchip system enables continuous recording and triggering of neurovascular activity, and analysis of heart rate and behaviour in freely behaving rodents over weeks This system can be used to characterize physiological and behavioural changes associated with the sleep-wake cycle over extended time periods This approach can also be used with mice expressing channelrhodopsin to trigger and record cortical spreading depression (CSD) in freely behaving subjects. The neurovascular responses to CSD are remarkably different under anaesthesia compared with the awake state. The method is inexpensive and straightforward to employ at a relatively large scale. It enables translational investigation of a wide range of physiological and pathological conditions in rodent models of neurological and systemic diseases.
Collapse
Affiliation(s)
- Dmitri N Yousef Yengej
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Isabella Ferando
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,Department of Neurology, Miller School of Medicine at the University of Miami, 1150 NW 14th street, Miami, FL, 33136, USA
| | - Gayane Kechechyan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC 0657, La Jolla, CA, 92093-0657, USA
| | - Sinifunanya E Nwaobi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Shrayes Raman
- School of Letters and Sciences, UCLA, 1309 Murphy Hall Box 951413, Los Angeles, CA, 90095-1413, USA
| | - Andrew Charles
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Guido C Faas
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| |
Collapse
|
5
|
Srivastava I, Vazquez-Juarez E, Lindskog M. Reducing Glutamate Uptake in Rat Hippocampal Slices Enhances Astrocytic Membrane Depolarization While Down-Regulating CA3-CA1 Synaptic Response. Front Synaptic Neurosci 2020; 12:37. [PMID: 32973483 PMCID: PMC7461906 DOI: 10.3389/fnsyn.2020.00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
The majority of synaptic activity in the brain consists of glutamatergic transmission, and there are numerous mechanisms, both intra- and inter-cellular that regulate this excitatory synaptic activity. Importantly, uptake of glutamate plays an important role and a reduced level of astrocytic glutamate transporters affect the normally balanced neurotransmission and is observed in many mental disorders. However, reduced glutamate uptake affects many different synaptic mechanisms in the astrocyte as well as in the neuron, and the effects are challenging to delineate. Combining electrophysiological recordings from neurons and astrocytes as well as extracellular glutamate recordings in rat hippocampal slices, we confirmed previous work showing that synaptic stimulation induces a long-lasting depolarization of the astrocytic membrane that is dependent on inward-rectifier potassium channels. We further showed that when glutamate transporters are blocked, this astrocytic depolarization is greatly enhanced although synaptic responses are reduced. We propose that increasing the levels of synaptic glutamate through blocking glutamate transporters reduces the AMPA-mediated synaptic response while the NMDA receptor current increases, contributing to a rise in extracellular K+ leading to enhanced astrocytic depolarization.
Collapse
Affiliation(s)
- Ipsit Srivastava
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Erika Vazquez-Juarez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Lindskog
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Woo J, Jang MW, Lee J, Koh W, Mikoshiba K, Lee CJ. The molecular mechanism of synaptic activity-induced astrocytic volume transient. J Physiol 2020; 598:4555-4572. [PMID: 32706443 DOI: 10.1113/jp279741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Neuronal activity causes astrocytic volume change via K+ uptake through TREK-1 containing two-pore domain potassium channels. The volume transient is terminated by Cl- efflux through the Ca2+ -activated anion channel BEST1. The source of the Ca2+ required to open BEST1 appears to be the stretch-activated TRPA1 channel. Intense neuronal activity is synaptically coupled with a physical change in astrocytes via volume transients. ABSTRACT The brain volume changes dynamically and transiently upon intense neuronal activity through a tight regulation of ion concentrations and water movement across the plasma membrane of astrocytes. We have recently demonstrated that an intense neuronal activity and subsequent astrocytic AQP4-dependent volume transient are critical for synaptic plasticity and memory. We have also pharmacologically demonstrated a functional coupling between synaptic activity and the astrocytic volume transient. However, the precise molecular mechanisms of how intense neuronal activity and the astrocytic volume transient are coupled remain unclear. Here we utilized an intrinsic optical signal imaging technique combined with fluorescence imaging using ion sensitive dyes and molecular probes and electrophysiology to investigate the detailed molecular mechanisms in genetically modified mice. We report that a brief synaptic activity induced by a train stimulation (20 Hz, 1 s) causes a prolonged astrocytic volume transient (80 s) via K+ uptake through TREK-1 containing two-pore domain potassium (K2P) channels, but not Kir4.1 or NKCC1. This volume change is terminated by Cl- efflux through the Ca2+ -activated anion channel BEST1, but not the volume-regulated anion channel TTYH. The source of the Ca2+ required to open BEST1 appears to be the stretch-activated TRPA1 channel in astrocytes, but not IP3 R2. In summary, our study identifies several important astrocytic ion channels (AQP4, TREK-1, BEST1, TRPA1) as the key molecules leading to the neuronal activity-dependent volume transient in astrocytes. Our findings reveal new molecular and cellular mechanisms for the synaptic coupling of intense neuronal activity with a physical change in astrocytes via volume transients.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jaekwang Lee
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.,Department of Neuroscience, Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Biology, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - C Justin Lee
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.,Department of Neuroscience, Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|