1
|
Shao X, Wang K, Wu J, Ma X, Zhao Y, Xu T, Dai C, Zhang F, Wang Y, Ren X, Lu K, Yin Z, Guo B, Cao C, Xu X, Xue B. Deficiency of geranylgeranyl biphosphate synthase in kidney tubules causes cystic kidney disease. FASEB J 2024; 38:e23875. [PMID: 39229897 DOI: 10.1096/fj.202400800r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Polycystic kidney disease (PKD) is a common hereditary kidney disease. Although PKD occurrence is associated with certain gene mutations, its onset regulatory mechanisms are still not well understood. Here, we first report that the key enzyme geranylgeranyl diphosphate synthase (GGPPS) is specifically expressed in renal tubular epithelial cells of mouse kidneys. We aimed to explore the role of GGPPS in PKD. In this study, we established a Ggppsfl/fl:Cdh16cre mouse model and compared its phenotype with that of wild-type mice. A Ggpps-downregulation HK2 cell model was also used to further determine the role of GGPPS. We found that GGPPS was specifically expressed in renal tubular epithelial cells of mouse kidneys. Its expression also increased with age. Low GGPPS expression was observed in human ADPKD tissues. In the Ggppsfl/fl:Cdh16cre mouse model, Ggpps deletion in renal tubular epithelial cells induced the occurrence and development of renal tubule cystic dilation and caused the death of mice after birth due to abnormal renal function. Enhanced proliferation of cyst-lining epithelial cells was also observed after the knockout of Ggpps. These processes were related to the increased rate of Rheb on membrane/cytoplasm and hyperactivation of mTORC1 signaling. In conclusion, the deficiency of GGPPS in kidney tubules induced the formation of renal cysts. It may play a critical role in PKD pathophysiology. A novel therapeutic strategy could be designed according to this work.
Collapse
Affiliation(s)
- Xiaoyan Shao
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Wang
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Wu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaopen Ma
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yinjuan Zhao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Tao Xu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunsun Dai
- Center for Kidney Disease, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Furong Zhang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuqi Wang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xianguo Ren
- Department of Pediatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ke Lu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Zicheng Yin
- Nanjing Foreign Language School, Nanjing, Jiangsu Province, China
| | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xianlin Xu
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bin Xue
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing, China
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Jiang J, Zhang L, Zou J, Liu J, Yang J, Jiang Q, Duan P, Jiang B. Phosphorylated S6K1 and 4E-BP1 play different roles in constitutively active Rheb-mediated retinal ganglion cell survival and axon regeneration after optic nerve injury. Neural Regen Res 2023; 18:2526-2534. [PMID: 37282486 PMCID: PMC10360084 DOI: 10.4103/1673-5374.371372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR. S6K1 and 4E-BP1 are important downstream effectors of mTORC1. In this study, we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1 in the protection of retinal ganglion cells. We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration. We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute (14 days) and chronic (21 and 42 days) stages of injury. We also found that either co-expression of the dominant-negative S6K1 mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells. This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration. However, only S6K1 activation, but not 4E-BP1 knockdown, induced axon regeneration when applied alone. Furthermore, S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury, whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days post-injury. Overexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury. Likewise, co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury. These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rheb/mTOR. Together, our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity. Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Jikuan Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Lusi Zhang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingling Zou
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingyuan Liu
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jia Yang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Qian Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Peiyun Duan
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Bing Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Habib K, Bishayee K, Kang J, Sadra A, Huh SO. RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a. Mol Cells 2022; 45:588-602. [PMID: 35754370 PMCID: PMC9385565 DOI: 10.14348/molcells.2022.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/27/2022] Open
Abstract
Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelop-mental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.
Collapse
Affiliation(s)
- Khadija Habib
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
4
|
Choi S, Kang D, Kang J, Hong DK, Kang BS, Kho AR, Choi BY, Huh SO, Suh SW. The Role of Zinc in Axon Formation via the mTORC1 Pathway. Mol Neurobiol 2022; 59:3206-3217. [PMID: 35293604 DOI: 10.1007/s12035-022-02785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Zinc is an essential micronutrient required for proper function during neuronal development because it can modulate neuronal function and structure. A fully functional description of zinc in axonal processing in the central nervous system remains elusive. Here, we define the role of intracellular zinc in axon formation and elongation, involving the mammalian target of rapamycin complex 1 (mTORC1). To investigate the involvement of zinc in axon growth, we performed an ex vivo culture of mouse hippocampal neurons and administrated ZnCl2 as a media supplement. At 2 days in vitro, the administration of zinc induced the formation of multiple and elongated axons in the ex vivo culture system. A similar outcome was witnessed in callosal projection neurons in a developing mouse brain. Treatment with extracellular zinc activated the mTORC1 signaling pathway in mouse hippocampal neuronal cultures. The zinc-dependent enhancement of neuronal processing was inhibited either by the deactivation of mTORC1 with RAPTOR shRNA or by mTOR-insensitive 4EBP1 mutants. Additionally, zinc-dependent mTORC1 activation enhanced the axonal translation of TC10 and Par3 may be responsible for axonal growth. We identified a promising role of zinc in controlling axonogenesis in the developing brain, which, in turn, may indicate a novel structural role of zinc in the cytoskeleton and developing neurons.
Collapse
Affiliation(s)
- Seunghyuk Choi
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Donghyeon Kang
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
5
|
Bishayee K, Habib K, Nazim UM, Kang J, Szabo A, Huh SO, Sadra A. RNA binding protein HuD promotes autophagy and tumor stress survival by suppressing mTORC1 activity and augmenting ARL6IP1 levels. J Exp Clin Cancer Res 2022; 41:18. [PMID: 35012594 PMCID: PMC8744261 DOI: 10.1186/s13046-021-02203-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Neuronal-origin HuD (ELAVL4) is an RNA binding protein overexpressed in neuroblastoma (NB) and certain other cancers. The RNA targets of this RNA binding protein in neuroblastoma cells and their role in promoting cancer survival have been unexplored. In the study of modulators of mTORC1 activity under the conditions of optimal cell growth and starvation, the role of HuD and its two substrates were studied. Methods RNA immunoprecipitation/sequencing (RIP-SEQ) coupled with quantitative real-time PCR were used to identify substrates of HuD in NB cells. Validation of the two RNA targets of HuD was via reverse capture of HuD by synthetic RNA oligoes from cell lysates and binding of RNA to recombinant forms of HuD in the cell and outside of the cell. Further analysis was via RNA transcriptome analysis of HuD silencing in the test cells. Results In response to stress, HuD was found to dampen mTORC1 activity and allow the cell to upregulate its autophagy levels by suppressing mTORC1 activity. Among mRNA substrates regulated cell-wide by HuD, GRB-10 and ARL6IP1 were found to carry out critical functions for survival of the cells under stress. GRB-10 was involved in blocking mTORC1 activity by disrupting Raptor-mTOR kinase interaction. Reduced mTORC1 activity allowed lifting of autophagy levels in the cells required for increased survival. In addition, ARL6IP1, an apoptotic regulator in the ER membrane, was found to promote cell survival by negative regulation of apoptosis. As a therapeutic target, knockdown of HuD in two xenograft models of NB led to a block in tumor growth, confirming its importance for viability of the tumor cells. Cell-wide RNA messages of these two HuD substrates and HuD and mTORC1 marker of activity significantly correlated in NB patient populations and in mouse xenografts. Conclusions HuD is seen as a novel means of promoting stress survival in this cancer type by downregulating mTORC1 activity and negatively regulating apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02203-2.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Khadija Habib
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Uddin Md Nazim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Aniko Szabo
- Department of Anatomy, Alfaisal University, College of Medicine, Riyadh, Kingdom of Saudi Arabia
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea.
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
6
|
RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun 2021; 12:2589. [PMID: 33972524 PMCID: PMC8110792 DOI: 10.1038/s41467-021-22770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections formed during development which may contribute to symptoms of TSC, such as intellectual disabilities, autism, and epilepsy. Yet models examining the molecular basis for axonal guidance defects in developing human neurons have not been developed. Here, we generate human induced pluripotent stem cell (hiPSC) lines from a patient with TSC and genetically engineer counterparts and isogenic controls. By differentiating hiPSCs, we show that control neurons respond to canonical guidance cues as predicted. Conversely, neurons with heterozygous loss of TSC2 exhibit reduced responses to several repulsive cues and defective axon guidance. While TSC2 is a known key negative regulator of MTOR-dependent protein synthesis, we find that TSC2 signaled through MTOR-independent RHOA in growth cones. Our results suggest that neural network connectivity defects in patients with TSC may result from defects in RHOA-mediated regulation of cytoskeletal dynamics during neuronal development. Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections. Here, the authors generate iPSC-derived neurons from patients with TSC. TSC2 +/− neurons show impaired mTOR-independent RhoA signaling-mediated axon guidance.
Collapse
|