1
|
Yan S, Zhang Z, Wang J, Xia Y, Chen S, Xie S. River sediment microbial community composition and function impacted by thallium spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163101. [PMID: 36996985 DOI: 10.1016/j.scitotenv.2023.163101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Thallium (Tl) is widely used in various industries, which increases the risk of leakage into the environment. Since Tl is highly toxic, it can do a great harm to human health and ecosystem. In order to explore the response of freshwater sediment microorganisms to sudden Tl spill, metagenomic technique was used to elucidate the changes of microbial community composition and functional genes in river sediments. Tl pollution could have profound impacts on microbial community composition and function. Proteobacteria remained the dominance in contaminated szediments, indicating that it had a strong resistance to Tl contamination, and Cyanobacteria also showed a certain resistance. Tl pollution also had a certain screening effect on resistance genes and affected the abundance of resistance genes. Metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) were enriched at the site near the spill site, where Tl concentration was relatively low among polluted sites. When Tl concentration was higher, the screening effect was not obvious and the resistance genes even became lower. Moreover, there was a significant correlation between MRGs and ARGs. In addition, co-occurrence network analysis showed that Sphingopyxis had the most links with resistance genes, indicating that it was the biggest potential host of resistance genes. This study provided new insight towards the shifts in the composition and function of microbial communities after sudden serious Tl contamination.
Collapse
Affiliation(s)
- Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhengke Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Ji Wang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Yulin Xia
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Yu Y, Shi K, Li X, Luo X, Wang M, Li L, Wang G, Li M. Reducing cadmium in rice using metallothionein surface-engineered bacteria WH16-1-MT. ENVIRONMENTAL RESEARCH 2022; 203:111801. [PMID: 34339701 DOI: 10.1016/j.envres.2021.111801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) accumulation in rice grains poses a health risk for humans. In this study, a bacterium, Alishewanella sp. WH16-1-MT, was engineered to express metallothionein on the cell surface. Compared with the parental WH16-1 strain, Cd2+ adsorption efficiency of WH16-1-MT in medium was increased from 1.2 to 2.6 mg/kg dry weight. The WH16-1-MT strain was then incubated with rice in moderately Cd-contaminated paddy soil. Compared with WH16-1, inoculation with WH16-1-MT increased plant height, panicle length and thousand-kernel weight, and decreased the levels of ascorbic acid and glutathione and the activity of peroxidase. Compared with WH16-1, WH16-1-MT inoculation significantly reduced the concentrations of Cd in brown rice, husks, roots and shoots by 44.0 %, 45.5 %, 36.1 % and 47.2 %, respectively. Moreover, inoculation with WH16-1-MT reduced the bioavailability of Cd in soil, with the total Cd proportion in oxidizable and residual states increased from 29 % to 32 %. Microbiome analysis demonstrated that the addition of WH16-1-MT did not significantly alter the original bacterial abundance and community structure in soil. These results indicate that WH16-1-MT can be used as a novel microbial treatment approach to reduce Cd in rice grown in moderately Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xuexue Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xiong Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Mengjie Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|