1
|
Yancu D, Vaillancourt C, Sanderson JT. Evaluating the effects on steroidogenesis of estragole and trans-anethole in a feto-placental co-culture model. Mol Cell Endocrinol 2019; 498:110583. [PMID: 31536780 DOI: 10.1016/j.mce.2019.110583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 01/11/2023]
Abstract
In this study, we determined whether estragole and its isomer trans-anethole interfered with feto-placental steroidogenesis in a human co-culture model composed of fetal-like adrenocortical (H295R) and placental trophoblast-like (BeWo) cells. Estragole and trans-anethole are considered the biologically active compounds within basil and fennel seed essential oils, respectively. After a 24 h exposure of the co-culture to 2.5, 5.2 and 25 μM estragole or trans-anethole, hormone concentrations of estradiol, estrone, dehydroepiandrosterone, androstenedione, progesterone and estriol were significantly increased. Using RT-qPCR, estragole and trans-anethole were shown to significantly alter the expression of several key steroidogenic enzymes, such as those involved in cholesterol transport and steroid hormone biosynthesis, including StAR, CYP11A1, HSD3B1/2, SULT2A1, and HSD17B1, -4, and -5. Furthermore, we provided mechanistic insight into the ability of estragole and trans-anethole to stimulate promoter-specific expression of CYP19 through activation of the PKA pathway in H295R cells and the PKC pathway in BeWo cells, in both cases associated with increased cAMP levels. Moreover, we show new evidence suggesting a role for progesterone in regulating steroid hormone biosynthesis through regulation of the StAR gene.
Collapse
Affiliation(s)
- Debbie Yancu
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada
| | - J Thomas Sanderson
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
3
|
Essential oils disrupt steroidogenesis in a feto-placental co-culture model. Reprod Toxicol 2019; 90:33-43. [PMID: 31425786 DOI: 10.1016/j.reprotox.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023]
Abstract
We determined whether 5 common essential oils (basil, fennel seed, orange, black pepper and sage) interfered with feto-placental steroidogenesis in a co-culture model composed of fetal-like adrenocortical (H295R) and placental trophoblast-like (BeWo) cells. After a 24 h exposure, only basil and fennel seed oil significantly increased hormone concentrations of estradiol, estrone, dehydroepiandrosterone (DHEA), androstenedione, progesterone, and estriol. Basil and fennel seed oil were shown to significantly alter the expression of steroidogenic enzymes involved in cholesterol transport and steroid hormone biosynthesis, including StAR, CYP11A1, 3β-HSD1/2, SULT2A1, and HSD17β1, -4, and -5. Also, basil and fennel seed oil stimulated placental-specific promoter I.1 and pII-derived CYP19 mRNA in BeWo and H295R cells, respectively, as well as, increased CYP19 enzyme activity. Our results indicate that further study is necessary to determine the potential risks of using basil and fennel seed oils during pregnancy considering their potential to disrupt steroidogenic enzyme activity and expression in vitro.
Collapse
|
4
|
Czauderna C, Palestino-Dominguez M, Castven D, Becker D, Zanon-Rodriguez L, Hajduk J, Mahn FL, Herr M, Strand D, Strand S, Heilmann-Heimbach S, Gomez-Quiroz LE, Wörns MA, Galle PR, Marquardt JU. Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver. PLoS One 2018; 13:e0209067. [PMID: 30576355 PMCID: PMC6303069 DOI: 10.1371/journal.pone.0209067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0–1000 μg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects were detected in all cell lines, EGb761 promoted anti-proliferative and pro-apoptotic effects mainly in hepatoma cells. Consistently, EGb761 treatment caused a significant reduction in colony and sphere forming ability in hepatoma cells and no mentionable changes in IH. Transcriptomic changes involved oxidative stress response as well as key oncogenic pathways resembling Nrf2- and mTOR signaling pathway. Taken together, EGb761 induces differential effects in non-transformed and cancer cells. While treatment confers protective effects in non-malignant cells, EGb761 significantly impairs tumorigenic properties in cancer cells by affecting key oncogenic pathways. Results provide the rational for clinical testing of EGb761 in preventive and therapeutic strategies in human liver diseases.
Collapse
Affiliation(s)
- Carolin Czauderna
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Mayrel Palestino-Dominguez
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, Mexico
| | - Darko Castven
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Diana Becker
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Luis Zanon-Rodriguez
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Jovana Hajduk
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Friederike L. Mahn
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Monika Herr
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Dennis Strand
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Heilmann-Heimbach
- Department of Genomics of Institute of Human Genetics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Luis E. Gomez-Quiroz
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, Mexico
| | - Marcus A. Wörns
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Peter R. Galle
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Jens U. Marquardt
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
- * E-mail:
| |
Collapse
|