1
|
Ng WZ, Chan ES, Gourich W, Adiiba SH, Liow MY, Ooi CW, Tey BT, Song CP. Unveiling the role of mechanical process intensifications and chemical additives in boosting lipase-catalyzed hydrolysis of vegetable oil for fatty acid production: A comprehensive review. Int J Biol Macromol 2025; 284:138144. [PMID: 39613062 DOI: 10.1016/j.ijbiomac.2024.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The enzymatic production of fatty acids from vegetable oils is becoming a preferred method due to its mild conditions, simplicity, and scalability. This review analyzes studies on enzymatic hydrolysis, exploring various feedstocks, lipases, reaction conditions, and conversion yields. However, a key limitation is the longer reaction time compared to conventional methods. This limitation is primarily due to the immiscibility of triacylglycerols (TAGs) with water at low temperatures and pressures, as well as the lower activity of enzymes compared to chemical catalysts. To overcome these issues, chemical additives are identified as the most effective process intensification strategy. They are easy to implement, cause less damage to lipases, and are more efficient than mechanical methods. The impact of various chemical additives was thoroughly examined for potential improvements in the enzymatic hydrolysis of vegetable oils. A synergistic combination of chemical additives comprising ionic liquids (ILs) and polyols, along with ultrasound, as well as the consideration of immobilization techniques were explored. Overall, this review highlights the potential of chemical additives and their synergistic feasibility in enhancing the enzymatic performance of lipase-catalyzed hydrolysis reactions.
Collapse
Affiliation(s)
- Wei Zhe Ng
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wail Gourich
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Siti Hanifah Adiiba
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Min Ying Liow
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chien Wei Ooi
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Yang X, Lin S, Chen Y, Chen W, Lan D, Wang Y. Efficient Enzymatic Enrichment of High-purity Nervonic Acid from Malania oleifera Seed Oil. J Oleo Sci 2024; 73:99-111. [PMID: 38171735 DOI: 10.5650/jos.ess23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Nervonic acid (NA) is a monounsaturated fatty acid vital for brain health and is of emerging importance in various industrial applications, including therapeutics, food, and cosmetics. Given the growing demands of the food and pharmaceutical industries, there's a pressing need for high-purity NA. Previously, NA constituents in plant seed oils were chemically transformed into nervonic acid ethyl ester (NAEE) to facilitate extraction from seed oils. In this study, we present an enzymatic approach to convert NA constituents in Malania oleifera seed oil to NAEE. Combined with the utilization of the semi-preparative chromatography, we achieved a remarkable purity of 97.52% NAEE. Compared to conventional chemical preparations characterized by multiple steps, prolonged processing times, and low yields and purities, our enzymatic method stands out as a more efficient and advantageous alternative. On top of that, this innovative approach is environmentally friendly and circumvents health and safety issues associated with chemical processes.
Collapse
Affiliation(s)
- Ximei Yang
- School of Food Science and Engineering, South China University of Technology
| | - Sen Lin
- School of Food Science and Engineering, South China University of Technology
| | - Ying Chen
- School of Food Science and Engineering, South China University of Technology
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd
| |
Collapse
|
3
|
Faillace E, Brunini-Bronzini de Caraffa V, Mariani M, Berti L, Maury J, Vincenti S. Optimizing the First Step of the Biocatalytic Process for Green Leaf Volatiles Production: Lipase-Catalyzed Hydrolysis of Three Vegetable Oils. Int J Mol Sci 2023; 24:12274. [PMID: 37569649 PMCID: PMC10418742 DOI: 10.3390/ijms241512274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Green leaf volatiles (GLVs), including short chain volatile aldehydes, are widely used in the flavor and food industries because of their fresh aroma. To meet the growing demand for natural GLVs with high added value, the use of biocatalytic processes appears as a relevant application. In such processes, vegetable oils are bioconverted into GLVs. First, the triacylglycerols of the oils are hydrolyzed by a lipase. Then, the free polyunsaturated fatty acids are converted by a lipoxygenase. Finally, volatile C6 or C9 aldehydes and 9- or 12-oxoacids are produced with a hydroperoxide lyase. Optimization of each biocatalytic step must be achieved to consider a scale-up. In this study, three oils (sunflower, hempseed, and linseed oils) and three lipases (Candida rugosa, Pseudomonas fluorescens, and Rhizomucor miehei lipases) have been tested to optimize the first step of the process. The experimental design and response surface methodology (RSM) were used to determine the optimal hydrolysis conditions for each oil. Five factors were considered, i.e., pH, temperature, reaction duration, enzyme load, and oil/aqueous ratio of the reaction mixture. Candida rugosa lipase was selected as the most efficient enzyme to achieve conversion of 96 ± 1.7%, 97.2 ± 3.8%, and 91.8 ± 3.2%, respectively, for sunflower, hempseed, and linseed oils under the defined optimized reaction conditions.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Maury
- Laboratoire de Biochimie et Biologie Moléculaire Végétales, Campus Grimaldi, Université de Corse, CNRS UMR6134 SPE, BP52, 20250 Corte, France; (E.F.); (V.B.-B.d.C.); (M.M.); (L.B.)
| | - Sophie Vincenti
- Laboratoire de Biochimie et Biologie Moléculaire Végétales, Campus Grimaldi, Université de Corse, CNRS UMR6134 SPE, BP52, 20250 Corte, France; (E.F.); (V.B.-B.d.C.); (M.M.); (L.B.)
| |
Collapse
|
4
|
Abdel-Mageed HM, Nada D, Radwan RA, Mohamed SA, Gohary NAEL. Optimization of catalytic properties of Mucor racemosus lipase through immobilization in a biocompatible alginate gelatin hydrogel matrix for free fatty acid production: a sustainable robust biocatalyst for ultrasound-assisted olive oil hydrolysis. 3 Biotech 2022; 12:285. [PMID: 36276456 PMCID: PMC9485409 DOI: 10.1007/s13205-022-03319-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/15/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractImmobilization is a key technology that improves the operational stability of enzymes. In this study, alginate-gelatin (Alg-Gel) hydrogel matrix was synthesized and used as immobilization support for Mucor racemosus lipase (Lip). Enzyme catalyzed ultrasound-assisted hydrolysis of olive oil was also investigated. Alg-Gel matrix exhibited high entrapment efficiency (94.5%) with a degradation rate of 42% after 30 days. The hydrolysis of olive oil using Alg-Gel-Lip increased significantly (P < 0.05) as compared to free Lip. Optimum pH and temperature were determined as pH 5.0 and 40 °C, respectively. The Vmax values for free and immobilized Lip were determined to be 5.5 mM and 5.8 mM oleic acid/min/ml, respectively, and the Km values were 2.2 and 2.58 mM/ml respectively. Thermal stability was highly improved for Alg-Gel-Lip (t1/2 650 min and Ed 87.96 kJ/mol) over free Lip (t1/2 150 min and Ed 23.36 kJ/mol). The enzymatic activity of Alg-Gel-Lip was preserved at 96% after four consecutive cycles and 90% of the initial activity after storage for 60 days at 4 °C. Alg-Gel-Lip catalyzed olive oil hydrolysis using ultrasound showed a significant (P < 0.05) increase in hydrolysis rate compared to free Lip (from 0.0 to 58.2%, within the first 2 h). In contrast to traditional methodology, using ultrasonic improved temperature-dependent enzymatic catalyzed reactions and delivered greater reaction yields. Results suggest that Alg-Gel-Lip biocatalyst has great industrial application potential, particularly for free fatty acid production. In addition, the combined use of enzyme and ultrasound has the potential of eco-friendly technology.
Collapse
Affiliation(s)
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Rasha Ali Radwan
- Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt
| | - Saleh Ahmed Mohamed
- Molecular Biology Department, National Research Centre (NRC), El Behoth St Dokki, Cairo, Egypt
| | | |
Collapse
|
5
|
Silva HDA, Feiten M, Raspe D, Silva CDA. Hydrolysis of macauba kernel oil: ultrasound application in the substrates pre-emulsion step and effect of the process variables. AN ACAD BRAS CIENC 2022; 94:e20211267. [PMID: 35857967 DOI: 10.1590/0001-3765202220211267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
The main goal of the present work was to evaluate the application of ultrasound as a previous step to promote the substrates pre-emulsion in the hydrolysis reaction of macauba kernel oil (MKO). The ultrasound effect on the substrates pre-emulsion was evaluated on the free fatty acid (FFA) content, as well as the process variables (reaction time, percentage of catalyst Lipozyme® RM IM, and buffer solution). Reactions carried out with the substrates pre-emulsion presented higher FFA production, up to a 40 wt% increase in 1 hour of reaction, yielding 80 wt% of FFAs in 8 hours. The use of catalyst in the reaction medium, from 5 to 15 wt%, favored the FFAs production in 2 hours of reaction. Addition of 25 to 100 wt% of buffer solution led to 86 wt% of FFAs in 4 hours of reaction. Enzyme recycling resulted in a slight decrease in the FFA content, although the catalyst had maintained 85% of its initial activity after 30 h of use. Therefore, the ultrasound pre-emulsion previous step allowed a more efficient hydrolysis reaction of MKO, leading to an increase of up to 40 wt% on the FFA content, when compared to the hydrolysis without such step.
Collapse
Affiliation(s)
- Heloísa DA Silva
- Universidade Estadual de Maringá, Departamento de Tecnologia, Avenida Ângelo Moreira da Fonseca, 1800, Parque Danielle, 87506-370 Umuarama, PR, Brazil
| | - Mirian Feiten
- Universidade Estadual de Maringá, Departamento de Tecnologia, Avenida Ângelo Moreira da Fonseca, 1800, Parque Danielle, 87506-370 Umuarama, PR, Brazil
| | - Djéssica Raspe
- Universidade Estadual de Maringá, Centro de Ciências Agrárias, Avenida Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil
| | - Camila DA Silva
- Universidade Estadual de Maringá, Departamento de Tecnologia, Avenida Ângelo Moreira da Fonseca, 1800, Parque Danielle, 87506-370 Umuarama, PR, Brazil
| |
Collapse
|
6
|
Hydrolysis of Edible Oils by Fungal Lipases: An Effective Tool to Produce Bioactive Extracts with Antioxidant and Antimicrobial Potential. Foods 2022; 11:foods11121711. [PMID: 35741908 PMCID: PMC9222666 DOI: 10.3390/foods11121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrolysis of olive, rapeseed, linseed, almond, peanut, grape seed and menhaden oils was performed with commercial lipases of Aspergillus niger, Rhizopus oryzae, Rhizopus niveus, Rhizomucor miehei and Candida rugosa. In chromogenic plate tests, olive, rapeseed, peanut and linseed oils degraded well even after 2 h of incubation, and the R. miehei, A. niger and R. oryzae lipases exhibited the highest overall action against the oils. Gas chromatography analysis of vegetable oils hydrolyzed by R. miehei lipase revealed about 1.1 to 38.4-fold increases in the concentrations of palmitic, stearic, oleic, linoleic and α-linolenic acids after the treatment, depending on the fatty acids and the oil. The major polyunsaturated fatty acids produced by R. miehei lipase treatment from menhaden oil were linoleic, α-linolenic, hexadecanedioic, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids, with yields from 12.02 to 52.85 µg/mL reaction mixture. Folin-Ciocalteu and ferric reducing power assays demonstrated improved antioxidant capacity for most tested oils after the lipase treatment in relation to the concentrations of some fatty acids. Some lipase-treated and untreated samples of oils, at 1.25 mg/mL lipid concentration, inhibited the growth of food-contaminating bacteria. The lipid mixtures obtained can be reliable sources of extractable fatty acids with health benefits.
Collapse
|
7
|
Ferreira MM, de Oliveira GF, Basso RC, Mendes AA, Hirata DB. Optimization of free fatty acid production by enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum candidum. Bioprocess Biosyst Eng 2019; 42:1647-1659. [DOI: 10.1007/s00449-019-02161-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022]
|
8
|
Enhanced Ricinoleic Acid Preparation Using Lipozyme TLIM as a Novel Biocatalyst: Optimized by Response Surface Methodology. Catalysts 2018. [DOI: 10.3390/catal8110486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ricinoleic acid (RA) is an important raw material for plasticizers, emulsifiers, and nanomaterials. In this work, a green and efficient method was developed for RA production. Results showed that Lipozyme TLIM can be used as a novel biocatalyst to catalyze the hydrolysis of castor oil (CO) for RA preparation. Response surface methodology (RSM) was used to evaluate and optimize the effects of reaction variables on the hydrolysis of CO. Reaction conditions were optimized as follows: 41.3 °C, enzyme load 8.9%, 39.2 h, and 40:1 molar ratio of water to oil. Under these optimized reaction variables, the maximum hydrolysis ratio of CO (96.2 ± 1.5%) was obtained. The effect of hydrolysis variables on the reaction was as follows: enzyme load > hydrolysis time > temperature. In conclusion, this is a green, simple, and efficient method for RA preparation and can provide a good alternative method for RA industrial production.
Collapse
|
9
|
Su CH, Nguyen HC, Nguyen ML, Tran PT, Wang FM, Guan YL. Liquid lipase-catalyzed hydrolysis of gac oil for fatty acid production: Optimization using response surface methodology. Biotechnol Prog 2018; 34:1129-1136. [PMID: 30281955 DOI: 10.1002/btpr.2714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/19/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
Abstract
Fatty acids are valuable products because they have wide industrial applications in the manufacture of detergents, cosmetics, food, and various biomedical applications. In enzyme-catalyzed hydrolysis, the use of immobilized lipase results in high production cost. To address this problem, Eversa Transform lipase, a new and low-cost liquid lipase formulation, was used for the first time in oil hydrolysis with gac oil as a triglyceride source in this study. Response surface methodology was employed to optimize the reaction conditions and establish a reliable mathematical model for predicting hydrolysis yield. A maximal yield of 94.16% was obtained at a water-to-oil molar ratio of 12.79:1, reaction temperature of 38.9 °C, enzyme loading of 13.88%, and reaction time of 8.41 h. Under this optimal reaction condition, Eversa Transform lipase could be reused for up to eight cycles without significant loss in enzyme activity. This study indicates that the use of liquid Eversa Transform lipase in enzyme-catalyzed oil hydrolysis could be a promising and cheap method of fatty acid production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018.
Collapse
Affiliation(s)
- Chia-Hung Su
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - My Linh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phung Thanh Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Fu-Ming Wang
- Graduate Inst. of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Lin Guan
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
10
|
Han B, Zhang W, Yin F, Liu S, Zhao X, Liu J, Wang C, Yang H. Optimization and kinetic study of methyl laurate synthesis using ionic liquid [Hnmp]HSO 4 as a catalyst. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180672. [PMID: 30839696 PMCID: PMC6170529 DOI: 10.1098/rsos.180672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
Methyl laurate was synthesized from lauric acid (LA) and methanol via an esterification reaction using ionic liquids (ILs) as catalysts. The efficiencies of three different catalysts, 1-methylimidazole hydrogen sulfate ([Hmim]HSO4), 1-methyl-2-pyrrolidonium hydrogen sulfate ([Hnmp]HSO4) and H2SO4, were compared. The effect of the methanol/LA molar ratio, reaction temperature, reaction time and catalyst dosage on the esterification rate of LA was investigated by single-factor experiments. Based on the single-factor experiments, the esterification of LA and methanol was optimized using response surface methodology. The results showed that the most effective catalyst was the IL [Hnmp]HSO4. The optimal conditions were as follows: [Hnmp]HSO4 dosage of 5.23%, methanol/LA molar ratio of 7.68 : 1, reaction time of 2.27 h and reaction temperature of 70°C. Under these conditions, the LA conversion of the esterification reached 98.58%. A kinetic study indicated that the esterification was a second-order reaction with an activation energy and a frequency factor of 68.45 kJ mol-1 and 1.9189 × 109 min-1, respectively. The catalytic activity of [Hnmp]HSO4 remained high after five cycles.
Collapse
Affiliation(s)
- Benyong Han
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| | - Wudi Zhang
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| | - Fang Yin
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| | - Shiqing Liu
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| | - Xingling Zhao
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| | - Jing Liu
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| | - Changmei Wang
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| | - Hong Yang
- Faculty of Energy and Environmental Science, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming 650500, Yunnan, People's Republic of China
| |
Collapse
|
11
|
A novel and rapid method for fatty acid preparation by the lipase-catalyzed hydrolysis of Phoenix tree seeds. 3 Biotech 2018; 8:403. [PMID: 30221116 DOI: 10.1007/s13205-018-1426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023] Open
Abstract
Fatty acids are the precursors for the production of fuels, oleochemicals and special health care products. In this study, a novel rapid method for fatty acid (FA) preparation by the enzymatic hydrolysis of Phoenix tree seed, an undeveloped woody oil seed, was developed. High-temperature GC with flame ionization detector (FID) and the hydrolysis ratio were used to monitor reaction progress. Enzyme screening and the effect of reaction variables on the hydrolysis of seeds were evaluated and optimized by response surface methodology. The results showed that among the tested enzymes, Lipozyme TLIM showed the greatest amount of hydrolysis of Phoenix tree seed. FAs can be rapidly prepared by one-step hydrolysis of Phoenix tree seeds using Lipozyme TLIM as the biocatalyst. Under the optimized conditions (6% enzyme load, 1:8 mass ratio of seed to water, 47.7 °C and 16 min), the maximum hydrolysis ratio (96.4 ± 1.1%) can be achieved. The effect of reaction variables on the hydrolysis decreased in the following order: reaction time > enzyme load > substrate ratio of seed to water > reaction temperature. This work provides a novel and rapid method for FA preparation from oil seeds.
Collapse
|
12
|
A novel chiral stationary phase LC-MS/MS method to evaluate oxidation mechanisms of edible oils. Sci Rep 2017; 7:10026. [PMID: 28855636 PMCID: PMC5577281 DOI: 10.1038/s41598-017-10536-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
The elucidation of lipid oxidation mechanisms of food is vital. In certain lipids, characteristic lipid hydroperoxide isomers are formed by different oxidation mechanisms (i.e., photo-oxidation or auto-oxidation). For example, linoleic acid is photo-oxidized to 13-9Z, 11E-hydroperoxyoctadecadienoic acid (HPODE), 12-9Z,13E-HPODE, 10-8E,12Z-HPODE and 9-10E,12Z-HPODE, whereas 13-9Z, 11E-HPODE, 13-9E,11E-HPODE, 9-10E,12Z-HPODE and 9-10E,12E-HPODE are formed by auto-oxidation. Therefore, we considered that oxidation mechanisms could be evaluated by analyzing these characteristic positional and cis/trans lipid hydroperoxide isomers. In this study, we developed a novel chiral stationary phase LC-MS/MS (CSP-LC-MS/MS) method to analyze the positional and cis/trans isomers of HPODE, with the use of a chiral column and sodium ion. Also, as an application of the method, either light-exposed or heated edible oils were treated with lipase to hydrolyze triacylglycerols. The resultant fatty acids including HPODE isomers were analyzed with the developed method. As a result, HPODE isomers characteristic to photo-oxidation were certainly detected in light-exposed edible oils. On the other hand, in heated edible oils, the HPODE isomers characteristic to auto-oxidation were largely increased. Thus, the combination of the developed CSP-LC-MS/MS method with lipase proves to be a powerful tool to evaluate the involvement and mechanisms of lipid oxidation in the process of food deterioration.
Collapse
|
13
|
Hou X, Sun S. Enzymatic production of sterculic acid from the novel Phoenix tree seed oil: Optimization and kinetic study. GRASAS Y ACEITES 2017. [DOI: 10.3989/gya.0109171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phoenix tree (Firmiana simplex) seed oil is a novel oil which is rich in sterculic acid. Sterculic acid, a cyclopropene fatty acid, can be used as the inhibitor of the stearoyl-CoA desaturase system and mammary carcinomas growth. In this work, Lipozyme TLIM-catalyzed hydrolysis of the novel Phoenix tree seed oil was used to prepare sterculic acid. High temperature GC-FID and the degree of hydrolysis (DH) were used to monitor the reaction progress. Effects of reaction variables on the hydrolysis were evaluated and optimized using response surface methodology. Results showed that sterculic acid can be successfully prepared from the novel seed oil, and the effect of reaction variables on the hydrolysis decreased in the order of reaction time > enzyme load > temperature. A high yield of fatty acids (DH, 98.2±0.8%) can be obtained under optimized conditions (45 ºC, mass ratio of water to oil 10:1, enzyme load 10%, and 18 h). The Arrhenius equation for the hydrolysis was LnV0 = 9.12-4721/T. The activation energy was 39.25KJ/mol. The kinetic values for Vmax, K/m were 0.232mol/(L∙min) and 0.084 mol/L, respectively.
Collapse
|
14
|
Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst Eng 2016; 40:23-34. [DOI: 10.1007/s00449-016-1671-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
|
15
|
Odaneth AA, Vadgama RN, Bhat AD, Lali AM. Tuning Lipase Reaction for Production of Fatty Acids from Oil. Appl Biochem Biotechnol 2016; 180:504-515. [DOI: 10.1007/s12010-016-2113-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
16
|
Pongket U, Piyatheerawong W, Thapphasaraphong S, H-Kittikun A. Enzymatic preparation of linoleic acid from sunflower oil: an experimental design approach. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1057523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Bucio SL, Solaesa ÁG, Sanz MT, Melgosa R, Beltrán S, Sovová H. Kinetic Study for the Ethanolysis of Fish Oil Catalyzed by Lipozyme ® 435 in Different Reaction Media. J Oleo Sci 2015; 64:431-41. [DOI: 10.5650/jos.ess14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Ángela García Solaesa
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos
| | - María Teresa Sanz
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos
| | - Rodrigo Melgosa
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos
| | - Sagrario Beltrán
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos
| | - Helena Sovová
- Institute of Chemical Process Fundamentals of the Academy of Sciences of the Czech Republic
| |
Collapse
|