1
|
Kato C, Kusumoto I, Kato S, Otoki Y, Ito J, Totsuka H, Rajgopal A, Hong J, Nakagawa K. Induction of ferroptosis in human keratinocyte HaCaT cells by squalene hydroperoxide: Possible prevention of skin ferroptosis by botanical extracts. Biochem Biophys Res Commun 2024; 698:149553. [PMID: 38271833 DOI: 10.1016/j.bbrc.2024.149553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Ever since the proposal of ferroptosis, it has been studied as a nonapoptotic cell death caused by iron ion-dependent phospholipid (PL) peroxidation. We previously showed that treatment of human hepatoma cell line HepG2 with prepared PL hydroperoxide (PLOOH) resulted in ferroptosis. However, in human sebum, the major hydroperoxide is not PLOOH but squalene hydroperoxide (SQOOH), and to our knowledge, it is not established yet whether SQOOH induces ferroptosis in the skin. In this study, we synthesized SQOOH and treated human keratinocyte HaCaT cells with SQOOH. The results showed that SQOOH induces ferroptosis in HaCaT cells in the same way that PLOOH causes ferroptosis in HepG2 cells. Some natural antioxidants (botanical extracts) could inhibit the ferroptosis in both the cell types. Consequently, future research focus would revolve around the involvement of SQOOH-induced ferroptosis in skin pathologies as well as the prevention and treatment of skin diseases through inhibition of ferroptosis by botanical extracts.
Collapse
Affiliation(s)
- Chikara Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8572, Japan; College of Agriculture, Academic Institute, Shizuoka University, 836 Otani, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ibuki Kusumoto
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8572, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8572, Japan
| | - Yurika Otoki
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8572, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8572, Japan
| | - Hirono Totsuka
- Amway Japan G.K., 7-1 Udagawacho, Shibuya-ku, Tokyo, 150-0042, Japan
| | - Arun Rajgopal
- Nutrilite Health Institute, Amway I&S, 5600 Beach Blvd., Buena Park, CA, 90621, USA
| | - Jina Hong
- Nutrilite Health Institute, Amway I&S, 5600 Beach Blvd., Buena Park, CA, 90621, USA
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8572, Japan.
| |
Collapse
|
2
|
Miyazaki R, Kato S, Otoki Y, Rahmania H, Sakaino M, Takeuchi S, Sato T, Imagi J, Nakagawa K. Elucidation of decomposition pathways of linoleic acid hydroperoxide isomers by GC-MS and LC-MS/MS. Biosci Biotechnol Biochem 2023; 87:179-190. [PMID: 36416801 DOI: 10.1093/bbb/zbac189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Food lipid oxidation provides various volatile compounds involved in food flavor via the decomposition of lipid hydroperoxide (LOOH). This study predicted the pathways which can coherently explain LOOH decomposition focusing on hydroperoxy octadecadienoic acid (HpODE) isomers (9-EZ-HpODE, 9-EE-HpODE, 10-HpODE, 12-HpODE, 13-ZE-HpODE, and 13-EE-HpODE) which are the major LOOH contained in edible oils. Each standard was first prepared and thermally decomposed. Generated volatile and non-volatile compounds were analyzed by GC-MS and LC-MS/MS. The results showed that all HpODE decomposition was based on the factors such as favorable scission, radical delocalization, and cyclization. Interestingly, the formation of 8-HpODE and 14-HpODE were demonstrated during HpODE decomposition. The insights obtained in this study would explain the generation pathways of flavor involved in food quality.
Collapse
Affiliation(s)
- Ruriko Miyazaki
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yurika Otoki
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Halida Rahmania
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Masayoshi Sakaino
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,Food Design Center, J-OIL MILLS, INC., Yokohama, Kanagawa, Japan
| | - Shigeo Takeuchi
- Food Design Center, J-OIL MILLS, INC., Yokohama, Kanagawa, Japan
| | - Toshiro Sato
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,Food Design Center, J-OIL MILLS, INC., Yokohama, Kanagawa, Japan
| | - Jun Imagi
- Food Design Center, J-OIL MILLS, INC., Yokohama, Kanagawa, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Morrison GC, Eftekhari A, Lakey PSJ, Shiraiwa M, Cummings BE, Waring MS, Williams B. Partitioning of reactive oxygen species from indoor surfaces to indoor aerosols. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2310-2323. [PMID: 36314460 DOI: 10.1039/d2em00307d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) are among the species thought to be responsible for the adverse health effects of particulate matter (PM) inhalation. Field studies suggest that indoor sources of ROS contribute to measured ROS on PM in indoor air. We hypothesize that ozone reacts on indoor surfaces to form semi-volatile ROS, in particular organic peroxides (OPX), which partition to airborne particles. To test this hypothesis, we modeled ozone-induced formation of OPX, its decay and its partitioning to PM in a residential building and compared the results to field measurements. Simulations indicate that, while ROS of outdoor origin is the primary contributor to indoor ROS (in PM), a substantial fraction of ROS present in indoor PM is from ozone-surface chemistry. At an air change rate equal to 1/h, and an outdoor ozone mixing ratio of 35 ppb, 25% of the ROS concentration in air is due to indoor formation and partitioning of OPX to PM. For the same conditions, but with a modest indoor source of PM (1.5 mg h-1), 44% of indoor ROS on PM is of indoor origin. An indoor source of ozone, such as an electrostatic air cleaner, also increases OPX present in indoor PM. The results of the simulations support the hypothesis that ozone-induced formation of OPX on indoor surfaces, and subsequent partitioning to aerosols, is sufficient to explain field observations. Therefore, indoor sourced ROS could contribute meaningfully to total inhaled PM-ROS.
Collapse
Affiliation(s)
- Glenn C Morrison
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA.
| | - Azin Eftekhari
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, GA, USA
| | | | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, CA, USA
| | - Bryan E Cummings
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michael S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Brent Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Takahashi T, Kato S, Ito J, Shimizu N, Parida IS, Itaya-Takahashi M, Sakaino M, Imagi J, Yoshinaga K, Yoshinaga-Kiriake A, Gotoh N, Ikeda I, Nakagawa K. Dietary triacylglycerol hydroperoxide is not absorbed, yet it induces the formation of other triacylglycerol hydroperoxides in the gastrointestinal tract. Redox Biol 2022; 57:102471. [PMID: 36137475 PMCID: PMC9493066 DOI: 10.1016/j.redox.2022.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
The in vivo presence of triacylglycerol hydroperoxide (TGOOH), a primary oxidation product of triacylglycerol (TG), has been speculated to be involved in various diseases. Thus, considerable attention has been paid to whether dietary TGOOH is absorbed from the intestine. In this study, we performed the lymph duct-cannulation study in rats and analyzed the level of TGOOH in lymph following administration of a TG emulsion containing TGOOH. As we successfully detected TGOOH from the lymph, we hypothesized that this might be originated from the intestinal absorption of dietary TGOOH [hypothesis I] and/or the in situ formation of TGOOH [hypothesis II]. To determine the validity of these hypotheses, we then performed another cannulation study using a TG emulsion containing a deuterium-labeled TGOOH (D2-TGOOH) that is traceable in vivo. After administration of this emulsion to rats, we clearly detected unlabeled TGOOH instead of D2-TGOOH from the lymph, indicating that TGOOH is not absorbed from the intestine but is more likely to be produced in situ. By discriminating the isomeric structures of TGOOH present in lymph, we predicted the mechanism by which the intake of dietary TGOOH triggers oxidative stress (e.g., via generation of singlet oxygen) and induces in situ formation of TGOOH. The results of this study hereby provide a foothold to better understand the physiological significance of TGOOH on human health.
Collapse
Affiliation(s)
- Takumi Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan; J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Naoki Shimizu
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Isabella Supardi Parida
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Mayuko Itaya-Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Masayoshi Sakaino
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Jun Imagi
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kazuaki Yoshinaga
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Aya Yoshinaga-Kiriake
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Ikeda
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan; J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.
| |
Collapse
|
5
|
Paulson A, Lee YJ. Novel Ambient Oxidation Trends in Fingerprint Aging Discovered by Kendrick Mass Defect Analysis. ACS CENTRAL SCIENCE 2022; 8:1328-1335. [PMID: 36188339 PMCID: PMC9523776 DOI: 10.1021/acscentsci.2c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 06/16/2023]
Abstract
A Kendrick mass defect (KMD) plot is an efficient way to disperse complex high-resolution mass spectral data in a visually informative two-dimensional format which allows for the rapid assignment of compound classes that differ by heteroatom content and/or unsaturation. Fingerprint lipid oxidation has the potential to be used to estimate the time since deposition of a fingerprint, but the mass spectra become extremely complex as the lipids degrade. We apply KMD plot analysis for the first time to sebaceous fingerprints aged for 0-7 days to characterize lipid degradation processes analyzed by MALDI-MS. In addition to the ambient ozonolysis of fingerprint lipids previously reported, we observed unique spectral features associated with epoxides and medium chain fatty acid degradation products that are correlated with fingerprint age. We propose an ambient epoxidation mechanism via a peroxyl radical intermediate and the prevalence of omega-10 fatty acyl chains in fingerprint lipids to explain the features observed by the KMD plot analysis. Our hypotheses are supported by an aging experiment performed in a sparse ozone condition and on-surface Paternò-Büchi reaction. A comprehensive understanding of fingerprint degradation processes, afforded by the KMD plots, provides crucial insights for considering which ions to monitor and which to avoid, when creating a robust model for time since deposition of fingerprints.
Collapse
|
6
|
Determination of acrolein generation pathways from linoleic acid and linolenic acid: increment by photo irradiation. NPJ Sci Food 2022; 6:21. [PMID: 35413955 PMCID: PMC9005701 DOI: 10.1038/s41538-022-00138-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
2-Propenal (acrolein) is a toxic aldehyde generated from the thermal degradation of edible oils. While previous studies have suggested that linolenic acid (LnA) is the origin of acrolein formation in edible oils, these studies were performed under thermal conditions where only the fatty acid hydroperoxide (FAOOH) isomers derived from radical oxidation were formed. In this study, we reinvestigated the acrolein generation pathway through another oxidation mechanism involving singlet oxygen (1O2) oxidation (type II photo-oxidation). Standards of the main FAOOH isomers (oleic acid hydroperoxide, linoleic acid hydroperoxide (HpODE), and linolenic acid hydroperoxide (HpOTE)) found in edible oils were prepared, and their decomposition products, including those derived from1O2 oxidation (i.e., 10- and 12-HpODE) were analyzed by GC-EI-MS. We found that 1O2 oxidation products of linoleic acid (LA) and LnA but not OA, are significant sources of acrolein formation. The amount of acrolein formed from edible oils high in LA (e.g., rice bran oil) increased by photo irradiation. Further investigation into the mechanism of acrolein generation demonstrated that the amount of acrolein derived from 1O2 oxidation-specific HpOTE isomers (i.e., 10- and 15-HpOTE) was two times greater than that of other HpOTE isomers (i.e., 9-, 12-, 13-, and 16-HpOTE). The results of the present study provide a new pathway of acrolein formation from type II photo-oxidation. This information can be used to inform on oil storage and processing conditions to reduce exposure and dietary intake of acrolein.
Collapse
|
7
|
Kontogianni VG, Gerothanassis IP. Analytical and Structural Tools of Lipid Hydroperoxides: Present State and Future Perspectives. Molecules 2022; 27:2139. [PMID: 35408537 PMCID: PMC9000705 DOI: 10.3390/molecules27072139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mono- and polyunsaturated lipids are particularly susceptible to peroxidation, which results in the formation of lipid hydroperoxides (LOOHs) as primary nonradical-reaction products. LOOHs may undergo degradation to various products that have been implicated in vital biological reactions, and thus in the pathogenesis of various diseases. The structure elucidation and qualitative and quantitative analysis of lipid hydroperoxides are therefore of great importance. The objectives of the present review are to provide a critical analysis of various methods that have been widely applied, and more specifically on volumetric methods, applications of UV-visible, infrared, Raman/surface-enhanced Raman, fluorescence and chemiluminescence spectroscopies, chromatographic methods, hyphenated MS techniques, NMR and chromatographic methods, NMR spectroscopy in mixture analysis, structural investigations based on quantum chemical calculations of NMR parameters, applications in living cells, and metabolomics. Emphasis will be given to analytical and structural methods that can contribute significantly to the molecular basis of the chemical process involved in the formation of lipid hydroperoxides without the need for the isolation of the individual components. Furthermore, future developments in the field will be discussed.
Collapse
Affiliation(s)
- Vassiliki G. Kontogianni
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
8
|
Khalifa S, Enomoto M, Kato S, Nakagawa K. Novel Photoinduced Squalene Cyclic Peroxide Identified, Detected, and Quantified in Human Skin Surface Lipids. Antioxidants (Basel) 2021; 10:1760. [PMID: 34829631 PMCID: PMC8614752 DOI: 10.3390/antiox10111760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Skin surface lipids (SSLs) form the first barrier that protects the human organism from external stressors, disruption of the homeostasis of SSLs can result in severe skin abnormalities. One of the main causes of this disruption is oxidative stress that is primarily due to SSLs oxidation. Squalene (SQ), the most abundant lipid among SSLs, was shown to first undergo singlet molecular oxygen (1O2) oxidation to yield 6 SQ-monohydroperoxide (SQ-OOH) isomers as the primary oxidation products. However, due to the instability and lability of hydroperoxides, we found that when total SQ-OOH isomers are further photooxidized, they form a unique higher molecular weight secondary oxidation product. To generate the compound, we photooxidized total SQ-OOH isomers in the presence of ground state molecular oxygen (3O2), after its isolation and purification, we studied its structure using MS/MS, NMR, derivatization reactions, and chemical calculations. The compound was identified as 2-OOH-3-(1,2-dioxane)-SQ. Photooxidation of individual SQ-OOH isomers revealed that 6-OOH-SQ is the precursor of 2-OOH-3-(1,2-dioxane)-SQ and indicated the possibility of the formation of similar cyclic peroxides from each isomer following the same photoinduced chain reaction mechanism. An HPLC-MS/MS method was developed for the analysis of 2-OOH-3-(1,2-dioxane)-SQ and its presence on the skin was confirmed in SSLs of six healthy individuals. Its quantity on the skin correlated directly to that of SQ and was not inversely proportional to its precursor, indicating the possibility of its accumulation on the skin surface and the constant regeneration of 6-OOH-SQ from SQ's oxidation. In general, research on lipid cyclic peroxides in the human organism is very limited, and especially on the skin. This study shows for the first time the identification and presence of a novel SQ cyclic peroxide "2-OOH-3-(1,2-dioxane)-SQ" in SSLs, shedding light on the importance of further studying its effect and role on the skin.
Collapse
Affiliation(s)
- Saoussane Khalifa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan; (S.K.); (S.K.)
| | - Masaru Enomoto
- Applied Bioorganic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan;
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan; (S.K.); (S.K.)
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan; (S.K.); (S.K.)
| |
Collapse
|
9
|
Investigation of Lipoproteins Oxidation Mechanisms by the Analysis of Lipid Hydroperoxide Isomers. Antioxidants (Basel) 2021; 10:antiox10101598. [PMID: 34679733 PMCID: PMC8533262 DOI: 10.3390/antiox10101598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
The continuous formation and accumulation of oxidized lipids (e.g., lipid hydroperoxides (LOOH)) which are present even in plasma lipoproteins of healthy subjects, are ultimately considered to be linked to various diseases. Because lipid peroxidation mechanisms (i.e., radical, singlet oxygen, and enzymatic oxidation) can be suppressed by certain proper antioxidants (e.g., radical oxidation is efficiently suppressed by tocopherol), in order to suppress lipid peroxidation successfully, the determination of the peroxidation mechanism involved in the formation of LOOH is deemed crucial. In this study, to determine the peroxidation mechanisms of plasma lipoproteins of healthy subjects, we develop novel analytical methods using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PC 16:0/18:2;OOH) and cholesteryl linoleate hydroperoxide (CE 18:2;OOH) isomers. Using the newly developed methods, these PC 16:0/18:2;OOH and CE 18:2;OOH isomers in the low-density lipoprotein (LDL) and high-density lipoprotein (HDL) of healthy subjects are analyzed. Consequently, it is found that predominant PC 16:0/18:2;OOH and CE 18:2;OOH isomers in LDL and HDL are PC 16:0/18:2;9OOH, PC 16:0/18:2;13OOH, CE 18:2;9OOH, and CE 18:2;13OOH, which means that PC and CE in LDL and HDL are mainly oxidized by radical and/or enzymatic oxidation. In conclusion, the insights about the oxidation mechanisms shown in this study would be useful for a more effective suppression of oxidative stress in the human organism.
Collapse
|
10
|
Kato S, Shimizu N, Ogura Y, Otoki Y, Ito J, Sakaino M, Sano T, Kuwahara S, Takekoshi S, Imagi J, Nakagawa K. Structural Analysis of Lipid Hydroperoxides Using Mass Spectrometry with Alkali Metals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2399-2409. [PMID: 34382801 DOI: 10.1021/jasms.1c00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation is involved in various biological phenomena (e.g., oxylipin generation and oxidative stress). Of oxidized lipid structures, the hydroperoxyl group position of lipid hydroperoxides (LOOHs) is a critical factor in determining their biological roles. Despite such interest, current methods to determine hydroperoxyl group positions possess some drawbacks such as selectivity. While we previously reported mass spectrometric methods using Na+ for the highly selective determination of hydroperoxyl group positions, nothing was known except for the fact that sodiated LOOHs (mainly linoleate) provide specific fragment ions. Thus, this study was aimed to investigate the effects of different alkali metals on the fragmentation of LOOHs, assuming its further application to analysis of other complex LOOHs. From the analysis of PC 16:0/18:2;OOH (phosphatidylcholine) and FA 18:2;OOH (fatty acid), we found that fragmentation pathways and ion intensities largely depend on the binding position and type of alkali metals (i.e., Li+, Hock fragmentation; Na+ and K+, α-cleavage (Na+ > K+); Rb+ and Cs+, no fragmentation). Furthermore, we proved that this method can be applied to determine the hydroperoxyl group position of esterified lipids (e.g., phospholipids and cholesterol esters) as well as polyunsaturated fatty acids (PUFAs) including n-3, n-6, and n-9 FA. We anticipate that the insights described in this study provide additional unique insights to conventional lipid oxidation research.
Collapse
Affiliation(s)
- Shunji Kato
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Yusuke Ogura
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Masayoshi Sakaino
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Takashi Sano
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Susumu Takekoshi
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Jun Imagi
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Kiyotaka Nakagawa
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| |
Collapse
|
11
|
Ishikawa A, Ito J, Shimizu N, Kato S, Kobayashi E, Ohnari H, Sakata O, Naru E, Nakagawa K. Linoleic acid and squalene are oxidized by discrete oxidation mechanisms in human sebum. Ann N Y Acad Sci 2021; 1500:112-121. [PMID: 34060095 DOI: 10.1111/nyas.14615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
Previous studies suggest that squalene (SQ) in sebum is oxidized by a photooxidation mechanism (i.e., singlet oxygen oxidation) to create SQ hydroperoxide (SQOOH), a compound that causes adverse skin conditions. However, oxidation of other lipids in sebum, such as linoleic acid (LA), has not been fully understood. Elucidating their oxidation, especially its mechanisms, may lead to a further understanding of the relationship between sebum oxidation and skin conditions. In this study, using HPLC-MS/MS, we aimed to detect LA hydroperoxide (LAOOH) directly from sebum and identify the oxidation mechanism of LA in sebum through analysis of LAOOH isomers. We developed extraction and HPLC-MS/MS analysis conditions that can sufficiently quantify each LAOOH isomer in sebum. Using this method, LAOOH was detected in samples from healthy individuals, demonstrating the presence of LAOOH in human sebum. Moreover, isomer analysis of LAOOH and SQOOH indicated that LA and SQ are oxidized in sebum by discrete oxidation mechanisms (LA oxidized by free radical oxidation, whereas SQ oxidized by singlet oxygen oxidation). Such results may further lead to the development of mechanism-specific ways to prevent oxidation of sebum via a selection of appropriate antioxidants, ultimately leading to the promotion of skin health.
Collapse
Affiliation(s)
- Ayano Ishikawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Eri Kobayashi
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,R&D Laboratories, KOSÉ Corporation, Tokyo, Japan
| | | | - Osamu Sakata
- R&D Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Eiji Naru
- R&D Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
MIYAZAWA T. Lipid hydroperoxides in nutrition, health, and diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:161-196. [PMID: 33840675 PMCID: PMC8062262 DOI: 10.2183/pjab.97.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Research on lipid peroxidation in food degradation, oil and fat nutrition, and age-related diseases has gained significant international attention for the view of improvement of societal health and longevity. In order to promote basic studies on these topics, a chemiluminescence detection-high performance liquid chromatography instrument using a high-sensitivity single photon counter as a detector was developed. This instrument enabled us to selectively detect and quantify lipid hydroperoxides, a primary product of lipid peroxidation reactions, as hydroperoxide groups at the lipid class level. Furthermore, an analytical method using liquid chromatography-tandem mass spectrometry has been established to discriminate the position and stereoisomerization of hydroperoxide groups in lipid hydroperoxides. Using these two methods, the reaction mechanisms of lipid peroxidation in food and in the body have been confirmed.
Collapse
Affiliation(s)
- Teruo MIYAZAWA
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Revealing the thermal oxidation stability and its mechanism of rice bran oil. Sci Rep 2020; 10:14091. [PMID: 32839472 PMCID: PMC7445235 DOI: 10.1038/s41598-020-71020-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
Although the stability of rice bran oil (RBO) has been showed on several studies, the factors which make it capable on maintaining its stability under thermal oxidation has not been sure yet. We hypothesized that its fatty acid composition [high composition of oleic acid (OA), lower composition of linoleic acid (LA) and α-linolenic acid (LnA)] and/or its antioxidant agents [γ-oryzanol (OZ)] and vitamin E [tocopherol (Toc), tocotrienol (T3)] might be the biggest factor.
To prove the hypothesis, we thermally oxidized RBO under 40 °C for 17 days to mimic the harsh daily storage condition, and compared it with soybean oil (SO) and rapeseed oil (RPO) then monitoring their primary oxidation products [triacylglycerol hydroperoxide (TGOOH)] from easily oxidized fatty acid contained in triacylglycerol (TG) and the amount loss of antioxidant agents. As a result, RBO showed the lowest TGOOH/TG ratio, followed by RPO and SO. The superior stability RPO compared SO might occur due to because of the influence of the fatty acid profile (higher OA and lower LA). For RBO’s case, besides its fatty acid profile, the existence of OZ and the synergistic effect of OZ and vitamin E might have a greater contribution in maintaining its stability under thermal oxidation.
Collapse
|
14
|
Direct Separation of the Diastereomers of Cholesterol Ester Hydroperoxide Using LC-MS/MS to Evaluate Enzymatic Lipid Oxidation. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cholesterol ester hydroperoxide (CEOOH) is one of the main lipid oxidation products contained in oxidized low-density lipoprotein (LDL). Previous studies suggest that CEOOH in oxidized LDL is closely related to several diseases. Of the oxidation mechanisms of cholesterol ester (CE) in vivo, it has been suggested that enzymatic oxidation induced by lipoxygenase (LOX) plays an important role. Thus, we attempted to develop a method that can evaluate the enzymatic oxidation of CE via the diastereoselective separation of CEOOH bearing 13RS-9Z,11E-hydroperoxy-octadecadienoic acid (13(RS)-HPODE CE). Firstly, we synthesized the standard of 13(RS)-HPODE CE. Using this standard, the screening of analytical conditions (i.e., column, mobile phase, and column temperature) was conducted, and separation of the diastereomers of 13(RS)-HPODE CE was achieved. The diastereoselective separation of 13(RS)-HPODE CE was also confirmed by LC-MS/MS. The developed method (column, CHIRALPAK IB N-3; mobile phase, hexane:ethanol (100:1, v/v); column temperature, 0 °C) can distinguish between enzymatic oxidation and other oxidation mechanisms of CE. Thus, the method can be expected to provide a greater understanding of the biochemical oxidation mechanisms in vivo. Such information will be essential to further elucidate the involvement of CEOOH in various diseases.
Collapse
|
15
|
Shimizu N, Ito J, Kato S, Eitsuka T, Miyazawa T, Nakagawa K. Significance of Squalene in Rice Bran Oil and Perspectives on Squalene Oxidation. J Nutr Sci Vitaminol (Tokyo) 2020; 65:S62-S66. [PMID: 31619649 DOI: 10.3177/jnsv.65.s62] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As an intermediate metabolite during the biosynthesis of sterols, squalene is found ubiquitously in plants and animals. In rice, squalene is contained in rice bran, and consequently, squalene in rice bran oil has gained attention. Studies have shown that the intake of squalene from food sources demonstrate various physiological benefits such as the prevention of cancer and cardiovascular disease. Squalene is also known as an effective antioxidant in edible oils. However, due to its chemical structure, squalene is susceptible to oxidation, which may cause a decline in the nutraceutical and antioxidative effects of squalene in edible oils. Oxidative degradation of squalene also results in the formation of scission products (i.e., aldehydes and ketones) which may lead to off-flavor. Since the rate of squalene oxidation depends on the factors that induce its oxidation (i.e., light or heat), emphasis on oxidation mechanisms is necessary. It has been demonstrated in previous studies that the oxidation products formed by the singlet oxygen oxidation and free radical oxidation of squalene are different, and more recently, we demonstrated that different squalene monohydroperoxide isomers are formed by each oxidation mechanism. We herein discuss the significance of squalene in rice bran oil as well as the oxidative degradation of squalene in edible oils with focus on oxidation mechanisms.
Collapse
Affiliation(s)
- Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University.,Division of Host Defense Mechanism, Tokai University School of Medicine
| | - Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University.,Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
16
|
Shimizu N, Ito J, Kato S, Eitsuka T, Saito T, Nishida H, Miyazawa T, Nakagawa K. Evaluation of squalene oxidation mechanisms in human skin surface lipids and shark liver oil supplements. Ann N Y Acad Sci 2019; 1457:158-165. [DOI: 10.1111/nyas.14219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural ScienceTohoku University Sendai Miyagi Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural ScienceTohoku University Sendai Miyagi Japan
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural ScienceTohoku University Sendai Miyagi Japan
| | - Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural ScienceTohoku University Sendai Miyagi Japan
| | - Tetsuo Saito
- Nissei Institute of Health Sciences Niigata Niigata Japan
| | | | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe)Tohoku University Sendai Miyagi Japan
- Food and Health Science Research Unit, Graduate School of Agricultural ScienceTohoku University Sendai Miyagi Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural ScienceTohoku University Sendai Miyagi Japan
| |
Collapse
|
17
|
Ito J, Komuro M, Parida IS, Shimizu N, Kato S, Meguro Y, Ogura Y, Kuwahara S, Miyazawa T, Nakagawa K. Evaluation of lipid oxidation mechanisms in beverages and cosmetics via analysis of lipid hydroperoxide isomers. Sci Rep 2019; 9:7387. [PMID: 31089240 PMCID: PMC6517444 DOI: 10.1038/s41598-019-43645-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Understanding of lipid oxidation mechanisms (e.g., auto-oxidation and photo-oxidation) in foods and cosmetics is deemed essential to maintain the quality of such products. In this study, the oxidation mechanisms in foods and cosmetics were evaluated through analysis of linoleic acid hydroperoxide (LAOOH) and linoleic acid ethyl ester hydroperoxide (ELAOOH) isomers. Based on our previous method for analysis of LAOOH isomers, in this study, we developed a new HPLC-MS/MS method that enables analysis of ELAOOH isomers. The HPLC-MS/MS methods to analyze LAOOH and ELOOH isomers were applied to food (liquor) and cosmetic (skin cream) samples. As a result, LAOOH and ELAOOH isomers specific to photo-oxidation, and ELAOOH isomers characteristic to auto-oxidation were detected in some marketed liquor samples, suggesting that lipid oxidation of marketed liquor proceeds by both photo- and auto-oxidation during the manufacturing process and/or sales. In contrast, because only LAOOH and ELAOOH isomers specific to auto-oxidation were detected in skin cream stored under dark at different temperatures (-5 °C-40 °C) for different periods (2-15 months), auto-oxidation was considered to be the major oxidation mechanism in such samples. Therefore, our HPLC-MS/MS methods appear to be powerful tools to elucidate lipid oxidation mechanisms in food and cosmetic products.
Collapse
Affiliation(s)
- Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Marina Komuro
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Isabella Supardi Parida
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Shunji Kato
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Yasuhiro Meguro
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Yusuke Ogura
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Teruo Miyazawa
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
18
|
Shimizu N, Ito J, Kato S, Otoki Y, Goto M, Eitsuka T, Miyazawa T, Nakagawa K. Oxidation of squalene by singlet oxygen and free radicals results in different compositions of squalene monohydroperoxide isomers. Sci Rep 2018; 8:9116. [PMID: 29904110 PMCID: PMC6002538 DOI: 10.1038/s41598-018-27455-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Oxidation of squalene (SQ) causes a decline in the nutritional value of SQ in foods, as well as an accumulation of SQ oxidation products in skin lipids which lead to adverse skin conditions. However, mechanistic insights as to how SQ is oxidized by different oxidation mechanisms have been limited, and thus effective measures towards the prevention of SQ oxidation have not been identified. In this study, we oxidized SQ by either singlet oxygen oxidation or free radical oxidation, and monitored the formation of the six SQ monohydroperoxide (SQOOH) isomers, the primary oxidation products of SQ, at the isomeric level. While singlet oxygen oxidation of SQ resulted in the formation of similar amounts of the six SQOOH isomers, free radical oxidation of SQ mainly formed two types of isomers, 2-OOH-SQ and 3-OOH-SQ. The addition of β-carotene during singlet oxygen oxidation, and the addition of α-tocopherol during free radical oxidation lead to a dose-dependent decrease in the formation of SQOOH isomers. Such results suggest that the analysis of SQOOH at the isomeric level allows for the determination of the cause of SQ oxidation in various samples, and provides a foothold for future studies concerning the prevention of SQ oxidation.
Collapse
Affiliation(s)
- Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Masashi Goto
- R&D Department, Sunstar Inc., Takatsuki, Osaka, 569-1195, Japan
| | - Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 981-8555, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan.
| |
Collapse
|
19
|
Kato S, Shimizu N, Hanzawa Y, Otoki Y, Ito J, Kimura F, Takekoshi S, Sakaino M, Sano T, Eitsuka T, Miyazawa T, Nakagawa K. Determination of triacylglycerol oxidation mechanisms in canola oil using liquid chromatography-tandem mass spectrometry. NPJ Sci Food 2018; 2:1. [PMID: 31304251 PMCID: PMC6550225 DOI: 10.1038/s41538-017-0009-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/23/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022] Open
Abstract
Triacylglycerol (TG), the main component of edible oil, is oxidized by thermal- or photo- oxidation to form TG hydroperoxide (TGOOH) as the primary oxidation product. Since TGOOH and its subsequent oxidation products cause not only the deterioration of oil quality but also various toxicities, preventing the oxidation of edible oils is essential. Therefore understanding oxidation mechanisms that cause the formation of TGOOH is necessary. Since isomeric information of lipid hydroperoxide provides insights about oil oxidation mechanisms, we focused on dioleoyl-(hydroperoxy octadecadienoyl)-TG (OO-HpODE-TG) isomers, which are the primary oxidation products of the most abundant TG molecular species (dioleoyl-linoleoyl-TG) in canola oil. To secure highly selective and sensitive analysis, authentic OO-HpODE-TG isomer references (i.e., hydroperoxide positional/geometrical isomers) were synthesized and analyzed with HPLC-MS/MS. With the use of the method, photo- or thermal- oxidized edible oils were analyzed. While dioleoyl-(10-hydroperoxy-8E,12Z-octadecadienoyl)-TG (OO-(10-HpODE)-TG) and dioleoyl-(12-hydroperoxy-9Z,13E-octadecadienoyl)-TG (OO-(12-HpODE)-TG) were characteristically detected in photo-oxidized oils, dioleoyl-(9-hydroperoxy-10E,12E-octadecadienoyl)-TG and dioleoyl-(13-hydroperoxy-9E,11E-octadecadienoyl)-TG were found to increase depending on temperature in thermal-oxidized oils. These results prove that our methods not only evaluate oil oxidation in levels that are unquantifiable with peroxide value, but also allows for the determination of oil oxidation mechanisms. From the analysis of marketed canola oils, photo-oxidized products (i.e., OO-(10-HpODE)-TG and OO-(12-HpODE)-TG) were characteristically accumulated compared to the oil analyzed immediately after production. The method described in this paper is valuable in the understanding of oil and food oxidation mechanisms, and may be applied to the development of preventive methods against food deterioration. Edible oils become rancid when reacting with oxygen under light or heat, degrading into different products depending on the pathway. Kiyotaka Nakagawa at Tohoku University, Japan, and co-workers used instruments that can separate and identify by weight components in mixtures to study light- and heat-induced oxidation of canola oil. Using authentic samples of possible oxidation products as references, the team found that each process generated two unique species from triacylglycerol, the main ingredient in edible oils. These signature compounds allowed the researchers to reveal that heat-oxidation sped up as temperature increased and that light-oxidized products gradually accumulated in off-the-shelf canola oil after production. This method is more sensitive than conventional protocols and can tell exactly how oils are oxidized, useful for developing techniques for food preservation.
Collapse
Affiliation(s)
- Shunji Kato
- 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845 Japan.,2Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 Japan
| | - Naoki Shimizu
- 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845 Japan
| | - Yasuhiko Hanzawa
- 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845 Japan
| | - Yurika Otoki
- 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845 Japan
| | - Junya Ito
- 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845 Japan
| | - Fumiko Kimura
- 3Department of Human Health and Nutrition, Shokei Gakuin University, Natori, Miyagi 981-1295 Japan
| | - Susumu Takekoshi
- 2Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 Japan
| | - Masayoshi Sakaino
- Fundamental Research Laboratory, J-OIL MILLS, INC., Yokohama, Kanagawa 230-0053 Japan
| | - Takashi Sano
- Fundamental Research Laboratory, J-OIL MILLS, INC., Yokohama, Kanagawa 230-0053 Japan
| | - Takahiro Eitsuka
- 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845 Japan
| | - Teruo Miyazawa
- 5Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579 Japan.,6Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555 Japan
| | - Kiyotaka Nakagawa
- 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845 Japan
| |
Collapse
|