1
|
Tomita S, Kuroda K, Narihiro T. A small step to discover candidate biological control agents from preexisting bioresources by using novel nonribosomal peptide synthetases hidden in activated sludge metagenomes. PLoS One 2023; 18:e0294843. [PMID: 38011171 PMCID: PMC10681181 DOI: 10.1371/journal.pone.0294843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Biological control agents (BCAs), beneficial organisms that reduce the incidence or severity of plant disease, have been expected to be alternatives to replace chemical pesticides worldwide. To date, BCAs have been screened by culture-dependent methods from various environments. However, previously unknown BCA candidates may be buried and overlooked because this approach preferentially selects only easy-to-culture microbial lineages. To overcome this limitation, as a small-scale test case, we attempted to explore novel BCA candidates by employing the shotgun metagenomic information of the activated sludge (AS) microbiome, which is thought to contain unutilized biological resources. We first performed genome-resolved metagenomics for AS taken from a municipal sewage treatment plant and obtained 97 nonribosomal peptide synthetase (NRPS)/polyketide synthase (PKS)-related gene sequences from 43 metagenomic assembled bins, most of which were assigned to the phyla Proteobacteria and Myxococcota. Furthermore, these NRPS/PKS-related genes are predicted to be novel because they were genetically dissimilar to known NRPS/PKS gene clusters. Of these, the condensation domain of the syringomycin-related NRPS gene cluster was detected in Rhodoferax- and Rhodocyclaceae-related bins, and its homolog was found in previously reported AS metagenomes as well as the genomes of three strains available from the microbial culture collections, implying their potential BCA ability. Then, we tested the antimicrobial activity of these strains against phytopathogenic fungi to investigate the potential ability of BCA by in vitro cultivation and successfully confirmed the actual antifungal activity of three strains harboring a possibly novel NRPS gene cluster. Our findings provide a possible strategy for discovering novel BCAs buried in the environment using genome-resolved metagenomics.
Collapse
Affiliation(s)
- Shun Tomita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Sánchez-Lozano I, Muñoz-Cruz LC, Hellio C, Band-Schmidt CJ, Cruz-Narváez Y, Becerra-Martínez E, Hernández-Guerrero CJ. Metabolomic Insights of Biosurfactant Activity from Bacillus niabensis against Planktonic Cells and Biofilm of Pseudomonas stutzeri Involved in Marine Biofouling. Int J Mol Sci 2023; 24:ijms24044249. [PMID: 36835662 PMCID: PMC9965525 DOI: 10.3390/ijms24044249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In marine environments, biofilm can cause negative impacts, including the biofouling process. In the search for new non-toxic formulations that inhibit biofilm, biosurfactants (BS) produced by the genus Bacillus have demonstrated considerable potential. To elucidate the changes that BS from B. niabensis promote in growth inhibition and biofilm formation, this research performed a nuclear magnetic resonance (NMR) metabolomic profile analysis to compare the metabolic differences between planktonic cells and biofilms of Pseudomonas stutzeri, a pioneer fouling bacteria. The multivariate analysis showed a clear separation between groups with a higher concentration of metabolites in the biofilm than in planktonic cells of P. stutzeri. When planktonic and biofilm stages were treated with BS, some differences were found among them. In planktonic cells, the addition of BS had a minor effect on growth inhibition, but at a metabolic level, NADP+, trehalose, acetone, glucose, and betaine were up-regulated in response to osmotic stress. When the biofilm was treated with the BS, a clear inhibition was observed and metabolites such as glucose, acetic acid, histidine, lactic acid, phenylalanine, uracil, and NADP+ were also up-regulated, while trehalose and histamine were down-regulated in response to the antibacterial effect of the BS.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Luz Clarita Muñoz-Cruz
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Claire Hellio
- CNRS, IRD, Ifremer, LEMAR, Univ. Brest, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Instituto Politécnico Nacional-ESIQIE-UPALM, Unidad Profesional Adolfo López Mateos, Edificio 7, 1.er Piso, Sección A, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| |
Collapse
|
3
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
4
|
Englerová K, Bedlovičová Z, Nemcová R, Király J, Maďar M, Hajdučková V, Styková E, Mucha R, Reiffová K. Bacillus amyloliquefaciens-Derived Lipopeptide Biosurfactants Inhibit Biofilm Formation and Expression of Biofilm-Related Genes of Staphylococcus aureus. Antibiotics (Basel) 2021; 10:1252. [PMID: 34680832 PMCID: PMC8532693 DOI: 10.3390/antibiotics10101252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Biosurfactants (BSs) are surface-active compounds produced by diverse microorganisms, including the genus Bacillus. These bioactive compounds possess biological activities such as antiadhesive, antimicrobial and antibiofilm effects that can lead to important applications in combating many infections. Based on these findings, we decided to investigate the antibiofilm activity of BSs from the marine Bacillus amyloliquefaciens against Staphylococcus aureus CCM 4223. Expression of biofilm-related genes was also evaluated using qRT-PCR. Isolated and partially purified BSs were identified and characterized by molecular tools and by UHPLC-DAD and MALDI-TOF/MS. Bacillus amyloliquefaciens 3/22, that exhibited surfactant activity evaluated by oil spreading assay, was characterized using the 16S rRNA sequencing method. Screening by PCR detected the presence of the sfp, srfAA, fenD and ituD genes, suggesting production of the lipopeptides (LPs) surfactin, fengycin and iturin. The above findings were further supported by the results of UHPLC-DAD and MALDI-TOF/MS. As quantified by the crystal violet method, the LPs significantly (p < 0.001) reduced biofilm formation of S. aureus in a dose-dependent manner and decreased expression of biofilm-related genes fnbA, fnbB, sortaseA and icaADBC operon. Data from our investigation indicate a promising therapeutic application for LPs isolated from B. amyloliquefaciens toward prevention of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Karolína Englerová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Zdenka Bedlovičová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Radomíra Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Ján Király
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Vanda Hajdučková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (K.E.); (R.N.); (J.K.); (M.M.); (V.H.)
| | - Eva Styková
- Equine Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Rastislav Mucha
- Institute of Neurobiology BMC, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia;
| | - Katarína Reiffová
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesová 11, 041 54 Košice, Slovakia;
| |
Collapse
|
5
|
A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production. Commun Biol 2018; 1:133. [PMID: 30272012 PMCID: PMC6123732 DOI: 10.1038/s42003-018-0136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of Bacillus subtilis. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many Bacillus species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking rapP, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks. Lyons and Kolter describe a single-point mutation in the plasmid-borne gene rapP of Bacillus subtilis that optimizes surfactin transcription to express the minimum required for cooperation. The decrease in the production of this public good significantly prevented the exploitation of cooperative traits by cheaters.
Collapse
|