1
|
Karal MAS, Billah MM, Ahmed M, Ahamed MK. A review on the measurement of the bending rigidity of lipid membranes. SOFT MATTER 2023; 19:8285-8304. [PMID: 37873600 DOI: 10.1039/d3sm00882g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This review provides an overview of the latest developments in both experimental and simulation techniques used to assess the bending rigidity of lipid membranes. It places special emphasis on experimental methods that utilize model vesicles to manipulate lipid compositions and other experimental parameters to determine the bending rigidity of the membrane. It also describes two commonly used simulation methods for estimating bending rigidity. The impact of various factors on membrane bending rigidity is summarized, including cholesterol, lipids, salt concentration, surface charge, membrane phase state, peptides, proteins, and polyethylene glycol. These factors are shown to influence the bending rigidity, contributing to a better understanding of the biophysical properties of membranes and their role in biological processes. Furthermore, the review discusses future directions and potential advancements in this research field, highlighting areas where further investigation is required.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka 1207, Bangladesh
| |
Collapse
|
2
|
Gong J, Yao K, Sun Q, Sun Y, Sun L, Liu C, Xu B, Tan J, Zhao L, Xu B. Interfacial Composition of Surfactant Aggregates in the Presence of Fragrance: A Chemical Trapping Study. Molecules 2022; 27:molecules27144333. [PMID: 35889205 PMCID: PMC9320350 DOI: 10.3390/molecules27144333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, there has been increasing interest in daily-use chemical products providing a pleasant scent. The added fragrance molecules may induce microstructural transitions of surfactant aggregates, which further affect the physical and chemical properties of the products. Here, the effects of four types of aromatic alcohols (cinnamyl alcohol, phenyl ethanol, phenyl methanol and anisyl alcohol) on cetyltrimethylammonium bromide (CTAB)/KBr aggregates were studied. The combined results from rheology, dynamic light scattering, and transmission electron microscopy measurements showed that cinnamyl alcohol induced significant micellar growth, while increases in micellar growth were less obvious for the other aromatic alcohols. The changes in the interfacial molarities of water, aromatic alcohol, and bromide ions during such transitions were studied using the chemical trapping method. Transitions resulting from added cinnamyl alcohol were accompanied by significant declines in interfacial water and bromide ion molarities, and a rise in interfacial alcohol molarity. The marked decrease in interfacial water molarity was not observed in previous studies of the octanol induced formation of wormlike micelles and vesicles, indicating that a different mechanism was presented in the current system. Nuclear magnetic resonance investigation showed that π–π stacking between cinnamyl alcohols, but not cation–π interactions between alcohols and CTAB headgroups, facilitated the tight packing of alcohol molecules in CTAB aggregates and the repulsion of water from the interfacial region. The current study may provide a theoretical basis for the morphological regulation of surfactant aggregates in the presence of additives.
Collapse
Affiliation(s)
- Jiani Gong
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
| | - Kaixin Yao
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
| | - Qihan Sun
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
| | - Yujia Sun
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
| | - Lijie Sun
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
| | - Changyao Liu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
- Correspondence: (C.L.); (B.X.)
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (C.L.); (B.X.)
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Li Zhao
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
| | - Baocai Xu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China; (J.G.); (K.Y.); (Q.S.); (Y.S.); (L.S.); (L.Z.); (B.X.)
| |
Collapse
|
3
|
Akamatsu M, Saito K, Iwase H, Ogura T, Sakai K, Sakai H. Contrast Variation Small-Angle Neutron Scattering Study of Solubilization of Perfumes in Cationic Surfactant Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10770-10775. [PMID: 34459205 DOI: 10.1021/acs.langmuir.1c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perfume solubilization is an important process in the production of commercial products such as beverages, foods, and cosmetics. In the present study, small-angle neutron scattering (SANS) experiments were performed to investigate the solubilization behavior of perfumes in cetyltrimethylammonium bromide (CTAB) micelles. The solubilization of linalool (LL) and l-menthol (MT), which are relatively hydrophilic perfumes, did not change the size of the CTAB micelles although the perfumes were incorporated in the micelles, as indicated by a decrease in scattering length density. On the other hand, the solubilization of d-limonene (LN), a hydrophobic perfume, led to the swelling of CTAB micelles. An internal contrast variation SANS study was performed by the deuteration of CTAB molecules to directly observe the perfumes in the micelles. The radius of d-CTAB micelles solubilizing LL or MT corresponds to that of h-CTAB, which indicates that these perfumes are accommodated in the palisade layers of the micelles and are homogeneously distributed in the micelles. On the other hand, LN formed small droplets, as indicated by the SANS profile, which implies the solubilization of LN molecules in the core of the CTAB micelles. We found that the relatively hydrophilic perfumes (LL and MT) show less impact on the sizes of the cationic micelles in comparison to nonionic micelles. Thus, the internal contrast variation method of SANS allowed the direct observation of the solubilization sites of perfumes with different hydrophilicity-hydrophobicity balances. This method is a powerful tool to determine the solubilization states that affect the solubilization capacity, volatilization, or release speed of perfumes.
Collapse
Affiliation(s)
- Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kai Saito
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Iwase
- Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taku Ogura
- NIKKOL GROUP Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashi-ku, 174-0046 Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
5
|
Miyajima A, Inoue R, Onishi E, Miyake M, Hyodo R. Structural Viscosity Induced by Depletion Effect in Stable Vesicle Dispersion. J Oleo Sci 2019; 68:837-845. [PMID: 31413245 DOI: 10.5650/jos.ess19108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Producing structural viscosity in colloidal dispersions, such as vesicles and capsules, prevents separation of dispersed particles by increasing the viscosity between them, which is advantageous in terms of usability. So far, the separation behavior of various particles has been studied; however, there are very few examples wherein a stable dispersion state was constructed and controlled. In this study, we produced stable dispersions induced by the depletion effect in mixtures of vesicles of cationic surfactant derived from triethanolamine-based esterquat (TEQ) and a specific dextrin derivative (SDD) as a non-adsorptive polymer. In the composition region, where 8 to 16% of TEQ vesicles and 1.2% or less of SDDs were mixed, the viscosity increased proportionally with the particle concentration, and it was observed that stable dispersions were produced by structural viscosity. Furthermore, the effects of TEQ and SDD concentrations, and SDD size on the structural viscosity and cohesive energy were investigated, which were similar to the depletion effect in the Asakura-Oosawa (AO) theory. From the results, it was suggested that the structural viscosity of the mixed dispersions (TEQ vesicles and SDDs) was produced by the aggregated TEQ vesicle networks induced by the depletion flocculation.
Collapse
Affiliation(s)
| | - Ryo Inoue
- Research & Development Headquarters, LION Corporation
| | - Erika Onishi
- Research & Development Headquarters, LION Corporation
| | - Miyuki Miyake
- Research & Development Headquarters, LION Corporation
| | - Ryo Hyodo
- Research & Development Headquarters, LION Corporation
| |
Collapse
|