1
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
2
|
Qin S, Liu JY, Wang XQ, Feng BH, Ren YC, Zheng J, Yu K, Yu H, Li K, Zhu F, Chen M, Fu X, Chen T, Xing ZX, Mei H. ROS-mediated MAPK activation aggravates hyperoxia-induced acute lung injury by promoting apoptosis of type II alveolar epithelial cells via the STAT3/miR-21-5p axis. Mol Immunol 2023; 163:207-215. [PMID: 37839259 DOI: 10.1016/j.molimm.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Inhibition of type II alveolar epithelial (AE-II) cell apoptosis is a critical way to cure hyperoxia-induced acute lung injury (HALI). It has been reported that miR-21-5p could reduce H2O2-induced apoptosis in AE-II cells. However, the upstream molecular mechanism remains unclear. Herein, we established a cellular model of HALI by exposing AE-II cells to H2O2 treatment. It was shown that miR-21-5p alleviated H2O2-induced apoptosis in AE-II cells. ROS inhibition decreased apoptosis of H2O2-evoked AE-II cells via increasing miR-21-5p expression. In addition, ROS induced MAPK and STAT3 phosphorylation in H2O2-treated AE-II cells. MAPK inactivation reduces H2O2-triggered AE-II cell apoptosis. MAPK activation inhibits miR-21-5p expression by promoting STAT3 phosphorylation in H2O2-challenged AE-II cells. Furthermore, STAT3 activation eliminated MAPK deactivation-mediated inhibition on the apoptosis of AE-II cells under H2O2 condition. In conclusion, ROS-mediated MAPK activation promoted H2O2-triggered AE-II cell apoptosis by inhibiting miR-21-5p expression via STAT3 phosphorylation, providing novel targets for HALI treatment.
Collapse
Affiliation(s)
- Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Jun-Ya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Xiao-Qin Wang
- Department of Pediatric, The second affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Bang-Hai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi 563000, PR China
| | - Ying-Cong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Jie Zheng
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Kang Li
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Feng Zhu
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Wuxi Affiliated to Jiangnan University, Wuxi 214016, PR China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Tao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Zhou-Xiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China.
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China.
| |
Collapse
|
3
|
Xia S, Chen L, Li Z, Li Y, Zhou Y, Sun S, Su Y, Xu X, Shao J, Zhang Z, Kong D, Zhang F, Zheng S. Qingchang Wenzhong Decoction reduce ulcerative colitis in mice by inhibiting Th17 lymphocyte differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154460. [PMID: 36182798 DOI: 10.1016/j.phymed.2022.154460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Qingchang Wenzhong Decoction (QCWZD), a chinese herbal prescription, is widely used for ulcerative colitis (UC). Nevertheless, the active ingredients and mechanism of QCWZD in UC have not yet been explained clearly. PURPOSE This research focuses on the identification of the effective ingredients of QCWZD and the prediction and verification of their potential targets. METHODS The UC mice were established by adding 3.0% dextran sulfate sodium (DSS) to sterile water for one week. Concurrently, mice in the treatment group were gavage QCWZD or mesalazine. LC-MS analyzed the main components absorbed after QCWZD treatment, and network pharmacology predicted their possible targets. ELISA, qPCR, immunohistochemistry and immunofluorescence experiments were used to evaluate the colonic inflammation level and the intestinal barrier completeness. The percentage of Th17 and Treg lymphocytes was detected by flow cytometry. RESULTS After QCWZD treatment, twenty-seven compounds were identified from the serum. In addition, QCWZD treatment significantly reduced the increased myeloperoxidase (MPO) and inflammatory cell infiltration caused by DSS in the colonic. In addition, QCWZD can reduce the secretion of inflammatory factors in serum and promote the expression of mRNAs and proteins of occludin and ZO-1. Network pharmacology analysis indicated that inhibiting IL-6-STAT3 pathway may be necessary for QCWZD to treat UC. Flow cytometry analysis showed that QCWZD can restore the normal proportion of Th17 lymphocytes in UC mice. Mechanistically, QCWZD inhibited the phosphorylation of JAK2-STAT3 pathway, reducing the transcriptional activation of RORγT and IL-17A. CONCLUSIONS Overall, for the first time, our work revealed the components of QCWZD absorbed into blood, indicated that the effective ingredients of QCWZD may inhibit IL-6-STAT3 pathway and inhibit the differentiation of Th17 lymphocytes to reduce colon inflammation.
Collapse
Affiliation(s)
- Siwei Xia
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 210022, China.
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Jo HG, Seo J, Lee D. Clinical evidence construction of East Asian herbal medicine for inflammatory pain in rheumatoid arthritis based on integrative data mining approach. Pharmacol Res 2022; 185:106460. [PMID: 36152738 DOI: 10.1016/j.phrs.2022.106460] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to a significant social burden. East Asian herbal medicine (EAHM) has long been used to treat RA. Therefore, a systematic study of how EAHM treatments can be developed into new drugs using specific materials is needed. METHODS Eleven databases containing literature in English, Korean, Chinese, and Japanese were searched for randomized controlled trials comparing EAHM with conventional medicine (CM). A meta-analysis was performed on the variable data to assess their effects on inflammatory pain. Subsequently, we searched for core materials and combinations of core material-based data mining methods. RESULTS A total of 186 trials involving 19,716 patients with RA met the inclusion criteria. According to the meta-analysis, EAHM had a significantly superior effect on continuous pain intensity, tender joint count, and response rate. Patients treated with EAHM had a significantly reduced incidence of adverse events compared with those treated with CM. Based on additional analysis of the EAHM formula data included in this meta-analysis, 21 core materials and five core herbal combinations were identified. CONCLUSION EAHM remedies for RA have the adequate potential for use as candidate materials for treating inflammatory pain in RA. The candidate core herbs evaluated in this study act on multiple pathways and are expected to provide pain relief, sustained inflammation suppression, immune regulation, and prevention of joint destruction. It seems worthwhile to conduct follow-up research on drug development using the core materials derived from this review.
Collapse
Affiliation(s)
- Hee-Geun Jo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| | - Jihye Seo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Donghun Lee
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| |
Collapse
|