1
|
Nikseresht M, Shahrebabaki AM, Mohammad-Sadeghipour M, Hajizadeh MR, Zarei S, Hosseiniara R, Mortazavi M, Vatankhah H, Sayadi AR, Mahmoodi M. Comparison of serum levels of IL-10 and IL-11 and mRNA expression of IL-10, IL-11, COX-2, BCL6, and ZEB Family in peripheral blood mononuclear cells (PBMC) of women with polycystic ovary syndrome and healthy individuals. J Reprod Immunol 2024; 164:104281. [PMID: 38941927 DOI: 10.1016/j.jri.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The roles of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 genes in the potential correlation between polycystic ovary syndrome (PCOS), inflammation, and cancer remain controversial. AIMS This study aimed to compare serum levels of IL-10 and IL-11 and gene expression of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 in PBMCs of women with PCOS and healthy controls. METHODS A case-control study included 40 women with PCOS as the case group and 40 healthy women as controls. Group matching for age and BMI was performed. Serum levels of IL-10 and IL-11 were assessed using ELISA, while gene expression was measured using real-time PCR. Parameters were compared between groups, and correlations among gene expression and serum levels were explored. RESULTS In comparison to healthy women, women with PCOS exhibited a significant decrease in the expression of COX-2 and IL-10 genes (p<0.001), alongside a significant increase in ZEB2 gene expression (p<0.001). There were no significant differences observed in the expression of IL-11, BCL6, and ZEB1 genes. Furthermore, the serum level of IL-10 was significantly lower in women with PCOS compared to the control group (p<0.001), while no significant difference was found in IL-11 levels. Additionally, no significant correlations were identified between gene expression and serum levels. CONCLUSION In women with PCOS, reduced IL-10 gene expression may indicate inflammation and serve as a diagnostic biomarker. However, conflicting findings on COX-2 expression complicate understanding. Elevated ZEB2 expression in PCOS women may lead to infertility, epithelial-mesenchymal transition, and aggressive phenotypes.
Collapse
Affiliation(s)
- Mahsa Nikseresht
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Morshedi Shahrebabaki
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Hosseiniara
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mortazavi
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hajar Vatankhah
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Reza Sayadi
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Li X, Gao B, Gao B, Li X, Xia X. Transcriptome profiling reveals dysregulation of inflammatory and protein synthesis genes in PCOS. Sci Rep 2024; 14:16596. [PMID: 39025980 PMCID: PMC11258128 DOI: 10.1038/s41598-024-67461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.
Collapse
Affiliation(s)
- Xilian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Biao Gao
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China.
| | - Bingsi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xian Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
3
|
Psilopatis I, Vrettou K, Nousiopoulou E, Palamaris K, Theocharis S. The Role of Peroxisome Proliferator-Activated Receptors in Polycystic Ovary Syndrome. J Clin Med 2023; 12:jcm12082912. [PMID: 37109247 PMCID: PMC10141215 DOI: 10.3390/jcm12082912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) constitutes the most common endocrine disorder in women of reproductive age. Patients usually suffer from severe menstrual irregularities, skin conditions, and insulin resistance-associated health conditions. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene expression. In order to investigate the role of PPARs in the pathophysiology of PCOS, we conducted a literature review using the MEDLINE and LIVIVO databases and were able to identify 74 relevant studies published between 2003 and 2023. Different study groups reached contradictory conclusions in terms of PPAR expression in PCOS. Interestingly, numerous natural agents were found to represent a novel, potent anti-PCOS treatment alternatives. In conclusion, PPARs seem to play a significant role in PCOS.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Eleni Nousiopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
4
|
Guo X, Xu Y, Sun J, Wang Q, Kong H, Zhong Z. Exploring the Mechanism of Wenshen Huatan Quyu Decotion for PCOS Based on Network Pharmacology and Molecular Docking Verification. Stem Cells Int 2022; 2022:3299091. [PMID: 36071733 PMCID: PMC9441343 DOI: 10.1155/2022/3299091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To identify the active chemical in Wenshen Huatan Quyu Decotion (WHQD) and to explore its possible network interactions with the polycystic ovary syndrome (PCOS). Methods The Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) and the Bioinformatics Analysis Tool for Molecular Mechanisms in Chinese Medicine (BATMAN-TCM) were used to decompose compound formulations, detect active chemicals and their corresponding target genes, and then convert them into UniProt gene symbols. Meanwhile, PCOS-related target genes were collected from GeneCards to construct a protein-protein interaction (PPI) network, which was further analyzed by STRING online database. Gene Ontology (GO) functional analysis was also performed afterwards to construct the component-target gene-disease network to visualize the correlation between WHQD and PCOS. We then performed an in silico molecular docking study to validate the predicted relationships. Results WHQD consists of 14 single drugs containing a total of 67 chemical components. 216 genes were predicted as possible targets. 123 of the 216 target genes overlapped with PCOS. GO annotation analysis revealed that 1968 genes were associated with biological processes, 145 with molecular functions, and 71 with cellular components. KEGG analysis revealed 146 pathways involved PPI, and chemical-target gene-disease networks suggest that PGR, AR, ADRB2, IL-6, MAPK1/8, ESR1/2, CHRM3, RXRA, PPARG, BCL2/BAX, GABRA1, and NR3C2 may be key genes for the pharmacological effects of WHQD on PCOS. Molecular docking analysis confirmed that hydrogen bonding was the main interaction between WHQD and its targets. Conclusion WHQD exerts its pharmacological effects by improving insulin sensitivity, subfertility, and hormonal imbalance, increasing ovulation rates, which in turn may increase pregnancy rates in patients with significant efficacy.
Collapse
Affiliation(s)
- Xin Guo
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yunyi Xu
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Obstetrics and Gynecology, The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, China
| | - Juan Sun
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Qianqian Wang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haibo Kong
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Zixing Zhong
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
5
|
Yang H, Lee SR, Jo SL, Kim AH, Kim ER, Qu F, Hong EJ, Lee HW. The Improvement Effect of D-Chiro-Inositol and Ecklonia cava K. in the Rat Model of Polycystic Ovarian Syndrome. Front Pharmacol 2022; 13:905191. [PMID: 35928256 PMCID: PMC9343876 DOI: 10.3389/fphar.2022.905191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction: Polycystic Ovarian Syndrome (PCOS) is known to be an endocrine state that is characterized by oligomenorrhea, hyperandrogenism, and highly cystic follicles in the ovaries. The use of food ingredients and traditional medicine in Asian countries is well known, and previous studies have shown that Ecklonia cava K. [Alariaceae] (EC) is able to alleviate PCOS symptoms. D-Chiro-inositol (DCI) administration in pathologies where steroid biosynthesis is a crucial factor, i.e., PCOS, has provided satisfactory results. Methods: Therefore, we studied the synergistic effects of the two previously known active compounds. In rats with letrozole-induced PCOS, we focused on alternative therapies using EC and/or DCI extracts to alleviate ovarian failure. Results: As a nonsteroidal aromatase inhibitor, letrozole inhibits the conversion of testosterone to estrogen and subsequently causes PCOS. We divided 6-week-old female mice into the following six groups and evaluated them: vehicle, PCOS, PCOS + MET (metformin), PCOS + DCI, PCOS + EC, and PCOS + DCI + EC. In our study, PCOS rats treated with EC and DCI had low serum LH and T levels and low serum levels of inflammatory cytokines such as TNFα and IL-6. These treatments also appeared to regulate the production of factors that affect follicle formation and inflammation in the ovaries. Conclusion: We concluded that EC extract and/or DCI administration influenced aromatase production and reduced LH and T stimulation, and cotreatment with EC and DCI consequently restored ovarian dysfunction or anti-inflammatory responses in rats with PCOS-like symptoms.
Collapse
Affiliation(s)
- Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sang R. Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | - Fan Qu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- *Correspondence: Hye Won Lee, ,
| |
Collapse
|
6
|
Ievleva KD, Danusevich IN, Suturina LV. [Role of leptin and nuclear receptor PPARγ in PCOS pathogenesis]. ACTA ACUST UNITED AC 2020; 66:74-80. [PMID: 33481370 DOI: 10.14341/probl12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 12/06/2020] [Indexed: 11/06/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of female endocrine infertility. Insulin resistanсе is supposed to be one of the essential factors of this disease pathways. At the same time, the mechanisms of PCOS development in insulin-resistant patients have not been completely established. Leptin and Peroxisome Proliferator-Activated Receptor γ(PPARγ) are involved in carbohydrate metabolism and reproduction function regulation. It indicates that leptin and PPARγ possibly play a role in the pathways of PCOS. This article is a review of publications on this issue. The purpose of this review was to systematize the available information on the molecular mechanisms that determine the role of leptin and PPARγ in the development of PCOS. The literature search was carried out from 04/05/2020 to 05/17/2020 using the scientific literature databases: NCBI PubMed (foreign sources) and Cyberleninka (domestic sources). We analyzed publications for the period 1990-2020.The review presents the current understanding of the possible role of leptin and PPARγ in the regulation of endocrine, immune systems, and reproductive function, as well as in the development of PCOS. Currently, no studies cover the mechanisms of interaction between leptin and PPARγ in the pathways of this syndrome. The available studies indicating the individual contribution and association of leptin and PPARγ with PCOS are conflicting and have many limitations. Therefore, more studies of direct and indirect interaction of leptin and PPARγ, as well as their role in PCOS pathways, are needed.
Collapse
Affiliation(s)
- K D Ievleva
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - I N Danusevich
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - L V Suturina
- Scientific Сentre for Family Health and Human Reproduction Problems
| |
Collapse
|
7
|
Raad G, Bazzi M, Tanios J, Mourad Y, Azouri J, Azouri J, Fakih C. Optimization of The Cell Aggregates Method for Isolation and Purification of Human Granulosa Cells from Follicular Fluid. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 13:339-345. [PMID: 31710196 PMCID: PMC6875859 DOI: 10.22074/ijfs.2020.5790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aspirated ovarian follicular fluids (FF) contain luteal granulosa cells (LGCs) and other contaminating cell types. Several strategies, such as the antibody binding methods, the flask method, the cell strainer and positive selection of granulosa aggregates after density gradient (DG) centrifugation, were tested as LGC purification methods. Each of these strategies has its own advantages and disadvantages. Positive selection of granulosa aggregates after DG centrifugation is simple, rapid and efficient in terms of LGC recovery. However, it results in a low purity. Here, we aimed to test whether modifying the traditional protocol by collecting the aggregates from the FF, before the DG centrifugation could decrease the percentage of contaminating cells. MATERIALS AND METHODS In the present prospective study, 32 FF, from 32 women,were randomly assigned into one of the two purification techniques: positive selection of granulosa aggregates from the FF, after DG centrifugation (DG/ Agg, n=16) or positive selection of granulosa aggregates from the FF, before DG centrifugation (Agg/DG, n=16). At the end of each procedure cell count, vitality, morphology and purity of the cell suspension were evaluated. RESULTS No significant difference was detected in the total number of GCs between DG/Agg and Agg/DG (P>0.05). However, higher percentage of GCs with normal morphology was detected in Agg/DG compared to DG/Agg (P<0.001). Moreover, lower percentages of white blood cells (P<0.01), red blood cells (P<0.001) and epithelial cells (P<0.01) were identified in Agg/DG compared to DG/Agg. CONCLUSION Here we showed that positive selection of granulosa aggregates from the FF prior to DG technique had a higher purity compared to the traditional protocol. Thus, it could be a method of choice to prepare GCs for research purposes in clinical in vitro fertilization settings.
Collapse
Affiliation(s)
- Georges Raad
- Azoury IVF Clinic, Mount Lebanon Hospital, Camille Chamoun Bvd, Beirut, Lebanon. Electronic Address:
| | - Marwa Bazzi
- Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Judy Tanios
- Lebanese University, Faculty of Sciences, Section II, Fanar, Lebanon and Azoury IVF Clinic, Mount Lebanon Hospital, Camille Chamoun Bvd, Beirut, Lebanon
| | - Youmna Mourad
- Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Joan Azouri
- OB-GYN Department, Inova Fairfax Hospital, Falls Church, Virginia
| | - Joseph Azouri
- Azoury IVF Clinic, Mount Lebanon Hospital, Camille Chamoun Bvd, Beirut, Lebanon
| | - Chadi Fakih
- Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Zhuang Z, Pan X, Zhao K, Gao W, Liu J, Deng T, Qin W. The Effect of Interleukin-6 (IL-6), Interleukin-11 (IL-11), Signal Transducer and Activator of Transcription 3 (STAT3), and AKT Signaling on Adipocyte Proliferation in a Rat Model of Polycystic Ovary Syndrome. Med Sci Monit 2019; 25:7218-7227. [PMID: 31554782 PMCID: PMC6777385 DOI: 10.12659/msm.916385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is associated with low-grade inflammation, adipocyte hypertrophy, hyperglycemia, increased serum testosterone levels, and reduced lipolysis. This study aimed to investigate the role of interleukin-6 (IL-6) and IL-11 in the pathophysiology of adipocyte hypertrophy in a rat model of PCOS. Material/Methods The rat model of PCOS was developed using a subcutaneous injection of dehydroepiandrosterone (DHEA). Histology of the rat ovaries was used to confirm the development of PCOS. Serum levels of testosterone and glucose were measured. Immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to measure IL-6 and IL-11 in the rat model of PCOS. Cell proliferation was measured using the cell counting kit-8 (CCK-8) assay. Results Serum levels of testosterone and glucose and the expression of IL-6 and IL-11 were significantly increased in the rat model of PCOS via the activation of AKT/STAT3 signaling. Following IL-6 and IL-11 stimulation of mesenchymal adipocytes isolated from adipose tissue, IL-6 and IL-11 induced cell proliferation through the STAT3/AKT signaling pathway. Conclusions In a rat model of PCOS, increased expression of IL-6 and IL-11 was associated with the AKT/STAT3 pathway. Increased levels of IL-6 and IL-11 stimulated adipocytes from adipose tissue of the rat model, which promoted cell proliferation by activating AKT/STAT3 signaling.
Collapse
Affiliation(s)
- Zhaohui Zhuang
- Department of Reproduction, Suqian Maternity Hospital, Suqian, Jiangsu, China (mainland)
| | - Xiaohong Pan
- Department of Treating Potential Diseases, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| | - Kai Zhao
- Department of Gynecology, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| | - Wei Gao
- Department of Gynecology and Obstetrics, Suqian Maternity Hospital, Suqian, Jiangsu, China (mainland)
| | - Juan Liu
- Department of Gynecology and Obstetrics, Suqian Maternity Hospital, Suqian, Jiangsu, China (mainland)
| | - Tianqi Deng
- Department of Gynecology, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| | - Wenmin Qin
- Department of Gynecology, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| |
Collapse
|
9
|
Li Y, Chen C, Ma Y, Xiao J, Luo G, Li Y, Wu D. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci 2019; 228:167-175. [PMID: 31029778 DOI: 10.1016/j.lfs.2019.04.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS), a multisystem disease, is a major reason for female infertility around the world. It is no longer considered simply as a disease of ovary. Now researchers growing awareness of the multisystem features of this disease. PCOS has a higher relationship with metabolic disturbance and hypothalamic-pituitary-ovarian axis (HPOA) function disorders. This syndrome results in hyperandrogenemia (HA), hyperinsulinemia/insulin resistance (IR), increased estrone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) ratio imbalance, infertility, cardiovascular diseases, endometrial dysfunction, obesity, and including a litany of other health issues. Furthermore, PCOS has been garnered in recent times. Interventions like metformin, orlistat, hormonal contraceptives, GLP1 agonists, and VitD have been applied to ameliorate or reverse the pathological characterization of PCOS. Moreover, drug-combined therapy of PCOS is superior to single drug administration. This review will focus on the recent progress in pathogenesis and therapy of PCOS.
Collapse
Affiliation(s)
- Yan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, PR China; Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan 410078, PR China
| | - Changye Chen
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yan Ma
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Guifang Luo
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yukun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China.
| | - Daichao Wu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China; University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Sagvekar P, Kumar P, Mangoli V, Desai S, Mukherjee S. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin Epigenetics 2019; 11:61. [PMID: 30975191 PMCID: PMC6458760 DOI: 10.1186/s13148-019-0657-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Women with polycystic ovary syndrome (PCOS) manifest a host of ovarian defects like impaired folliculogenesis, anovulation, and poor oocyte quality, which grossly affect their reproductive health. Addressing the putative epigenetic anomalies that tightly regulate these events is of foremost importance in this disorder. We therefore aimed to carry out DNA methylome profiling of cumulus granulosa cells and assess the methylation and transcript expression profiles of a few differentially methylated genes contributing to ovarian defects in PCOS. A total of 20 controls and 20 women with PCOS were selected from a larger cohort of women undergoing IVF, after carefully screening their sera and follicular fluids for hormonal and biochemical parameters. DNA extracted from cumulus granulosa cells of three women each, from control and PCOS groups was subjected to high-throughput, next generation bisulfite sequencing, using the Illumina HiSeq 2500® platform. Remaining samples were used for the validation of methylation status of some identified genes by pyrosequencing, and the transcript expression profiles of these genes were assessed by quantitative real-time PCR. Results In all, 6486 CpG sites representing 3840 genes associated with Wnt signaling, G protein receptor, endothelin/integrin signaling, angiogenesis, chemokine/cytokine-mediated inflammation, etc., showed differential methylation in PCOS. Hypomethylation was noted in 2977 CpGs representing 2063 genes while 2509 CpGs within 1777 genes showed hypermethylation. Methylation differences were also noted in noncoding RNAs regulating several ovarian functions that are dysregulated in PCOS. Few differentially methylated genes such as aldo-keto reductase family 1 member C3, calcium-sensing receptor, resistin, mastermind-like domain 1, growth hormone-releasing hormone receptor and tumor necrosis factor, which predominantly contribute to hyperandrogenism, premature luteolysis, and oocyte development defects, were explored as novel epigenetic candidates in mediating ovarian dysfunction. Methylation profiles of these genes matched with our NGS findings, and their transcript expression patterns correlated with the gene hypo- or hypermethylation status. Conclusion Our findings suggest that the epigenetic dysregulation of genes involved in important processes associated with follicular development may contribute to ovarian defects observed in women with PCOS. Electronic supplementary material The online version of this article (10.1186/s13148-019-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Pankaj Kumar
- Colin Jamura Lab, Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), GKVK, Bellary Road, Bangalore, 560065, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Sadhana Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
11
|
Motamedzadeh L, Mohammadi MM, Hadinedoushan H, Farashahi Yazd E, Fesahat F. Association of IL-17 and IL-23 follicular fluid concentrations and gene expression profile in cumulus cells from infertile women at risk for ovarian hyperstimulation syndrome. HUM FERTIL 2019; 23:289-295. [PMID: 30714434 DOI: 10.1080/14647273.2019.1566648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study determined the association between the levels of interleukin (IL)-17 and IL-23 in follicular fluid (FF), as well as their mRNA levels in cumulus cells from infertile women at risk for ovarian hyperstimulation syndrome (OHSS). In this case-controlled study, the control group (n = 40) was infertile women whose partners had male factor infertility, whereas the case group (n = 40) was infertile women at risk of OHSS. IL-17 and IL-23 concentrations in FF were measured using an enzyme-linked immunosorbent assay method, whereas the mRNA expression levels of IL-17 and IL-23 of cumulus cells were determined using RT-PCR. Significantly higher levels of IL-17 were seen in the case group (p = 0.04), whereas there was no significant difference in IL-23 concentrations between the two groups (p = 0.3). The mRNA levels of IL-17 and IL-23 showed no significant differences. In the case group, there was a positive significant correlation between the IL-23 concentration in FF and the oocyte maturation rates (p = 0.01). In the case group, the number of follicles, MII oocytes, immature oocytes, fertilized oocytes and number of embryos were significantly higher than the control group (p < 0.05). Our findings showed that the mRNA expressions of IL-17 and IL-23 were similar in the two groups, and IL-17 was increased in the case group.
Collapse
Affiliation(s)
- Leila Motamedzadeh
- Department of Immunology & Allergy, Kerman University of Medical Sciences, Kerman, Iran.,Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mohammad Mahdi Mohammadi
- Department of Immunology & Allergy, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hadinedoushan
- Department of Immunology, Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Farzaneh Fesahat
- Department of Immunology, Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
12
|
Abedel-Majed MA, Romereim SM, Davis JS, Cupp AS. Perturbations in Lineage Specification of Granulosa and Theca Cells May Alter Corpus Luteum Formation and Function. Front Endocrinol (Lausanne) 2019; 10:832. [PMID: 31849844 PMCID: PMC6895843 DOI: 10.3389/fendo.2019.00832] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Anovulation is a major cause of infertility, and it is the major leading reproductive disorder in mammalian females. Without ovulation, an oocyte is not released from the ovarian follicle to be fertilized and a corpus luteum is not formed. The corpus luteum formed from the luteinized somatic follicular cells following ovulation, vasculature cells, and immune cells is critical for progesterone production and maintenance of pregnancy. Follicular theca cells differentiate into small luteal cells (SLCs) that produce progesterone in response to luteinizing hormone (LH), and granulosa cells luteinize to become large luteal cells (LLCs) that have a high rate of basal production of progesterone. The formation and function of the corpus luteum rely on the appropriate proliferation and differentiation of both granulosa and theca cells. If any aspect of granulosa or theca cell luteinization is perturbed, then the resulting luteal cell populations (SLC, LLC, vascular, and immune cells) may be reduced and compromise progesterone production. Thus, many factors that affect the differentiation/lineage of the somatic cells and their gene expression profiles can alter the ability of a corpus luteum to produce the progesterone critical for pregnancy. Our laboratory has identified genes that are enriched in somatic follicular cells and luteal cells through gene expression microarray. This work was the first to compare the gene expression profiles of the four somatic cell types involved in the follicle-to-luteal transition and to support previous immunofluorescence data indicating theca cells differentiate into SLCs while granulosa cells become LLCs. Using these data and incorporating knowledge about the ways in which luteinization can go awry, we can extrapolate the impact that alterations in the theca and granulosa cell gene expression profiles and lineages could have on the formation and function of the corpus luteum. While interactions with other cell types such as vascular and immune cells are critical for appropriate corpus luteum function, we are restricting this review to focus on granulosa, theca, and luteal cells and how perturbations such as androgen excess and inflammation may affect their function and fertility.
Collapse
Affiliation(s)
| | - Sarah M. Romereim
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Andrea S. Cupp
| |
Collapse
|
13
|
Furihata C, Suzuki T. Evaluation of 12 mouse marker genes in rat toxicogenomics public data, Open TG-GATEs: Discrimination of genotoxic from non-genotoxic hepatocarcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 838:9-15. [PMID: 30678831 DOI: 10.1016/j.mrgentox.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023]
Abstract
Previously, we proposed 12 marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2 and Tubb4b) to discriminate mouse genotoxic hepatocarcinogens (GTHC) from non-genotoxic hepatocarcinogens (NGTHC). This was determined by qPCR and principal component analysis (PCA), as the aim of an in vivo short-term screening for genotoxic hepatocarcinogens. For this paper, we conducted an application study of the 12 mouse marker genes to rat data, Open TG-GATEs (public data). We analyzed five typical rat GTHC (2-acetamodofluorene, aflatoxin B1, 2-nitrofluorene, N-nitrosodiethylamine and N-nitrosomorpholine), and not only seven typical rat NGTHC (clofibrate, ethanol, fenofibrate, gemfibrozil, hexachlorobenzene, phenobarbital and WY-14643) but also 11 non-genotoxic non-hepatocarcinogens (NGTNHC; allyl alcohol, aspirin, caffeine, chlorpheniramine, chlorpropamide, dexamethasone, diazepam, indomethacin, phenylbutazone, theophylline and tolbutamide) from Open TG-GATEs. The analysis was performed at 3, 6, 9 and 24 h after a single administration and 4, 8, 15 and 29 days after repeated administrations. We transferred Open TG-GATEs DNA microarray data into log2 data using the "R Project for Statistical Computing". GTHC-specific dose-dependent gene expression changes were observed and significance assessed with the Williams test. Similar significant changes were observed during 3-24 h and 4-29 days, assessed with Welch's t-test, except not for NGTHC or NGTNHC. Significant differential changes in gene expression were observed between GTHC and NGTHC in 11 genes (except not Tubb4b) and between GTHC and NGTNHC in all 12 genes at 24 h and 10 genes (except Ccnf and Mbd1) at 29 days, per Tukey's test. PCA successfully discriminated GTHC from NGTHC and NGTNHC at 24 h and 29 days. The results demonstrate that 12 previously proposed mouse marker genes are useful for discriminating rat GTHC from NGTHC and NGTNHC from Open TG-GATEs.
Collapse
Affiliation(s)
- Chie Furihata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomach, Kawasaki-ku, Kawasaki, 210-9501, Japan; School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258, Japan.
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomach, Kawasaki-ku, Kawasaki, 210-9501, Japan
| |
Collapse
|
14
|
Zhang BF, Hu Y, Liu X, Cheng Z, Lei Y, Liu Y, Zhao X, Mu M, Yu L, Cheng ML. The role of AKT and FOXO3 in preventing ovarian toxicity induced by cyclophosphamide. PLoS One 2018; 13:e0201136. [PMID: 30071053 PMCID: PMC6071999 DOI: 10.1371/journal.pone.0201136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/08/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclophosphamide (CTX) has immunosuppressive effects and has been wildly used as one anti-cancer drug in clinical. Significant toxicity has been noticed particularly in the reproductive system. CTX promotes the maturation of ovarian follicles, decreases follicular reserve, and ultimately lead to ovarian failure or even premature ovarian failure (POF). The placental extract (HPE) has been shown to have some beneficial impact on reproductive system; however, little is known regarding to the effect of HPE on protecting CTX-induced ovarian injury and the mechanism involved. Whether human placental extracts (HPE) has a protective effect on CTX-induced toxicity on ovarian was studied by using a CTX-induced ovarian injury animal model. The effects of HEP on histopathology, the number of atretic follicles, the weight of the ovary, serum hormone levels, and apoptosis in granulosa cells were studied in mice with CTX or control vehicle. Our results have demonstrated that HPE inhibited p-Rictor, reduced the expression of Bad, Bax and PPAR, and activated Akt and Foxo3a (increased their phosphorylation). Mice treated with HPE showed higher ovarian weight, lower number of atretic follicles, higher serum levels of the hormones E2 and progesterone, and lower apoptosis and serum levels of LH and FSH in granulosa cells, than that in the control animal group. Our data show that ovarian injury can be attenuated by HPE. HPE likely protects follicular granulosa cells from undergoing significant apoptosis and reduce atresia follicle formation, therefore, alleviates CTX-induced ovarian injury.
Collapse
Affiliation(s)
- Bao-fang Zhang
- The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - YaXin Hu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xinyan Liu
- Shandong Institute of Biological Products,Taishan district, Shandong, China
| | - Zhuo Cheng
- Peking University Health Science Center School of Foundational Education, Beijing,China
| | - Yu Lei
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - YongMei Liu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueke Zhao
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mao Mu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Yu
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming-liang Cheng
- The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail: (LY); (MLC)
| |
Collapse
|