1
|
Chen X, Leppänen T, Kainulainen S, Howarth TP, Oksenberg A, Töyräs J, Terrill PI, Korkalainen H. Sleep stage continuity is associated with objective daytime sleepiness in patients with suspected obstructive sleep apnea. J Clin Sleep Med 2024; 20:1595-1606. [PMID: 38722264 PMCID: PMC11446124 DOI: 10.5664/jcsm.11198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 10/03/2024]
Abstract
STUDY OBJECTIVES Excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea is poorly explained by standard clinical sleep architecture metrics. We hypothesized that reduced sleep stage continuity mediates this connection independently from standard sleep architecture metrics. METHODS A total of 1,907 patients with suspected obstructive sleep apnea with daytime sleepiness complaints underwent in-lab diagnostic polysomnography and next-day Multiple Sleep Latency Test. Sleep architecture was evaluated with novel sleep-stage continuity quantifications (mean sleep stage duration and probability of remaining in each sleep stage), and conventional metrics (total non-rapid eye movement stages 1, 2, 3 (N1, N2, N3) and rapid eye movement times; and sleep onset latency). Multivariate analyses were utilized to identify variables associated with moderate EDS (5 ≤ mean daytime sleep latency ≤ 10 minutes) and severe EDS (mean daytime sleep latency < 5 minutes). RESULTS Compared to those without EDS, participants with severe EDS had lower N3 sleep continuity (mean N3 period duration 10.4 vs 13.7 minutes, P < .05), less N3 time (53.8 vs 76.5 minutes, P < .05), greater total sleep time (374.0 vs 352.5 minutes, P < .05), and greater N2 time (227.5 vs 186.8 minutes, P < .05). After adjusting for standard sleep architecture metrics using multivariate logistic regression, decreased mean wake and N3 period duration, and the decreased probability of remaining in N2 and N3 sleep remained significantly associated with severe EDS, while the decreased probability of remaining in wake and N2 sleep were associated with moderate EDS. CONCLUSIONS Patients with obstructive sleep apnea and EDS experience lower sleep continuity, noticeable especially during N3 sleep and wake. Sleep-stage continuity quantifications assist in characterizing the sleep architecture and are associated with objective daytime sleepiness highlighting the need for more detailed evaluations of sleep quality. CITATION Chen X, Leppänen T, Kainulainen S, et al. Sleep stage continuity is associated with objective daytime sleepiness in patients with suspected obstructive sleep apnea. J Clin Sleep Med. 2024;20(10):1595-1606.
Collapse
Affiliation(s)
- Xin Chen
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Timo Leppänen
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Samu Kainulainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Timothy P. Howarth
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Darwin Respiratory and Sleep Health, Darwin Private Hospital, Darwin, Northern Territory, Australia
| | - Arie Oksenberg
- Sleep Disorders Unit, Loewenstein Hospital – Rehabilitation Centre, Raanana, Israel
| | - Juha Töyräs
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Centre, Kuopio University Hospital, Kuopio, Finland
| | - Philip I. Terrill
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Henri Korkalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Shetty M, Davey MJ, Nixon GM, Walter LM, Horne RSC. Sleep spindles are reduced in children with Down syndrome and sleep-disordered breathing. Pediatr Res 2024; 96:457-470. [PMID: 37845520 PMCID: PMC11343711 DOI: 10.1038/s41390-023-02854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB). We investigated sleep spindle activity, as a marker of sleep quality, and its relationship with daytime functioning in children with DS compared to typically developing (TD) children. METHODS Children with DS and SDB (n = 44) and TD children matched for age, sex and SDB severity underwent overnight polysomnography. Fast or Slow sleep spindles were identified manually during N2/N3 sleep. Spindle activity was characterized as spindle number, density (number of spindles/h) and intensity (density × average duration) on central (C) and frontal (F) electrodes. Parents completed the Child Behavior Check List and OSA-18 questionnaires. RESULTS In children with DS, spindle activity was lower compared to TD children for F Slow and F Slow&Fast spindles combined (p < 0.001 for all). Furthermore, there were no correlations between spindle activity and CBCL subscales; however, spindle activity for C Fast and C Slow&Fast was negatively correlated with OSA-18 emotional symptoms and caregiver concerns and C Fast activity was also negatively correlated with daytime function and total problems. CONCLUSIONS Reduced spindle activity in children with DS may underpin the increased sleep disruption and negative effects of SDB on quality of life and behavior. IMPACT Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB), which is associated with sleep disruption affecting daytime functioning. Sleep spindles are a sensitive marker of sleep quality. We identified for the first time that children with DS had reduced sleep spindle activity compared to typically developing children matched for SDB severity. The reduced spindle activity likely underpins the more disrupted sleep and may be associated with reduced daytime functioning and quality of life and may also be an early biomarker for an increased risk of developing dementia later in life in children with DS.
Collapse
Affiliation(s)
- Marisha Shetty
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Margot J Davey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Gillian M Nixon
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Lisa M Walter
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Rosemary S C Horne
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
The effects of sleep disordered breathing on sleep spindle activity in children and the relationship with sleep, behavior and neurocognition. Sleep Med 2023; 101:468-477. [PMID: 36521367 DOI: 10.1016/j.sleep.2022.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep disordered breathing (SDB), has adverse neurocognitive and behavioral sequelae in children, despite conventional measures of sleep disruption being unaffected. There is growing evidence that sleep spindles may serve as a more sensitive marker of sleep quality. We investigated the relationship between sleep spindles and sleep fragmentation and neurocognition across the spectrum of SDB severity in children. METHODS Children 3-12 years old referred for clinical assessment of SDB and age matched control children from the community were recruited and underwent polysomnography. Sleep spindles were identified manually during N2 and N3 sleep. Spindle activity was characterised as spindle number, density (number of spindles/h) and intensity (spindle density x average spindle duration). Children completed a battery of tests assessing global intellectual ability, language, attention, visuospatial ability, sensorimotor skills, adaptive behaviors and skills and problem behaviors and emotional difficulties. RESULTS Children were grouped into control, Primary Snoring, Mild OSA and Moderate/severe OSA, N = 10/group. All measures of spindle activity were lower in the SDB groups compared to the Control children and this reached statistical significance for Mild OSA (p < 0.05 for all). Higher spindle indices were associated with better performance on executive function and visual ability assessments but poorer performance on auditory attention and communication skills. Higher spindle indices were associated with better behavior. CONCLUSION The reduced spindle activity observed in the children with SDB, particularly Mild OSA, indicates that sleep micro-architecture is disrupted and that this disruption may underpin the negative effects of SDB on attention, learning and memory.
Collapse
|
4
|
Schreiner SJ, Werth E, Ballmer L, Valko PO, Schubert KM, Imbach LL, Baumann CR, Maric A, Baumann-Vogel H. Sleep spindle and slow wave activity in Parkinson disease with excessive daytime sleepiness. Sleep 2022; 46:6649751. [PMID: 35877159 DOI: 10.1093/sleep/zsac165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Study Objectives
Excessive daytime sleepiness (EDS) is a common and devastating symptom in Parkinson disease (PD), but surprisingly most studies showed that EDS is independent from nocturnal sleep disturbance measured with polysomnography. Quantitative electroencephalography (EEG) may reveal additional insights by measuring the EEG hallmarks of non-rapid eye movement (NREM) sleep, namely slow waves and spindles. Here, we tested the hypothesis that EDS in PD is associated with nocturnal sleep disturbance revealed by quantitative NREM sleep EEG markers.
Methods
Patients with PD (n = 130) underwent polysomnography followed by spectral analysis to calculate spindle frequency activity, slow-wave activity (SWA), and overnight SWA decline, which reflects the dissipation of homeostatic sleep pressure. We used the Epworth Sleepiness Scale (ESS) to assess subjective daytime sleepiness and define EDS (ESS > 10). All examinations were part of an evaluation for deep brain stimulation.
Results
Patients with EDS (n = 46) showed reduced overnight decline of SWA (p = 0.036) and reduced spindle frequency activity (p = 0.032) compared with patients without EDS. Likewise, more severe daytime sleepiness was associated with reduced SWA decline (ß= −0.24 p = 0.008) and reduced spindle frequency activity (ß= −0.42, p < 0.001) across all patients. Reduced SWA decline, but not daytime sleepiness, was associated with poor sleep quality and continuity at polysomnography.
Conclusions
Our data suggest that daytime sleepiness in PD patients is associated with sleep disturbance revealed by quantitative EEG, namely reduced overnight SWA decline and reduced spindle frequency activity. These findings could indicate that poor sleep quality, with incomplete dissipation of homeostatic sleep pressure, may contribute to EDS in PD.
Collapse
Affiliation(s)
- Simon J Schreiner
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Sleep and Health Zurich (SHZ), University of Zurich , Zurich , Switzerland
| | - Esther Werth
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Sleep and Health Zurich (SHZ), University of Zurich , Zurich , Switzerland
| | - Leonie Ballmer
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Philipp O Valko
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Sleep and Health Zurich (SHZ), University of Zurich , Zurich , Switzerland
| | - Kai M Schubert
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Swiss Epilepsy Center, Klinik Lengg , Zurich , Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Sleep and Health Zurich (SHZ), University of Zurich , Zurich , Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Sleep and Health Zurich (SHZ), University of Zurich , Zurich , Switzerland
| | - Heide Baumann-Vogel
- Department of Neurology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich , Zurich , Switzerland
| |
Collapse
|
5
|
Levin Y, Hosamane NS, McNair TE, Kunnam SS, Philpot BD, Fan Z, Sidorov MS. Evaluation of electroencephalography biomarkers for Angelman syndrome during overnight sleep. Autism Res 2022; 15:1031-1042. [PMID: 35304979 PMCID: PMC9227959 DOI: 10.1002/aur.2709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss‐of‐function mutations in the maternal copy of the UBE3A gene. AS is characterized by intellectual disability, impaired speech and motor skills, epilepsy, and sleep disruptions. Multiple treatment strategies to re‐express functional neuronal UBE3A from the dormant paternal allele were successful in rodent models of AS and have now moved to early phase clinical trials in children. Developing reliable and objective AS biomarkers is essential to guide the design and execution of current and future clinical trials. Our prior work quantified short daytime electroencephalograms (EEGs) to define promising biomarkers for AS. Here, we asked whether overnight sleep is better suited to detect AS EEG biomarkers. We retrospectively analyzed EEGs from 12 overnight sleep studies from individuals with AS with age and sex‐matched Down syndrome and neurotypical controls, focusing on low frequency (2–4 Hz) delta rhythms and sleep spindles. Delta EEG rhythms were increased in individuals with AS during all stages of overnight sleep, but overnight sleep did not provide additional benefit over wake in the ability to detect increased delta. Abnormal sleep spindles were not reliably detected in EEGs from individuals with AS during overnight sleep, suggesting that delta rhythms represent a more reliable biomarker. Overall, we conclude that periods of wakefulness are sufficient, and perhaps ideal, to quantify delta EEG rhythms for use as AS biomarkers.
Collapse
Affiliation(s)
- Yuval Levin
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia, USA.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Nishitha S Hosamane
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia, USA
| | - Taylor E McNair
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia, USA
| | - Shrujana S Kunnam
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia, USA
| | - Benjamin D Philpot
- Department of Cell Biology & Physiology, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zheng Fan
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael S Sidorov
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia, USA.,Departments of Pediatrics and Pharmacology & Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Basile C, Gigliotti F, Cesario S, Bruni O. The relation between sleep and neurocognitive development in infancy and early childhood: A neuroscience perspective. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:9-27. [PMID: 33641802 DOI: 10.1016/bs.acdb.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sleep is essential for human life. It has different characteristics in the early stages of life compared to later periods: during development, qualitative and quantitative changes in sleep features occur such as the onset of REM/NREM sleep at 3 months, the progressive increase of night sleep duration, and the reduction of total sleep time. Sleep seems to be essential in the cognitive functions' development, especially in the first period of life. Indeed, higher rates of night sleep at the age of 12 and 18 months are associated with higher executive functions' performance. Furthermore, memory consolidation occurs during sleep and sleep contributes to children's learning not only in retaining information but also in organizing memories most efficiently. Therefore, sleep problems could cause negative effects on some features of cognitive development like memory, executive functions, and learning process. There is also an intimate relationship between sleep and regulation of emotional brain functions, with a link between sleep disturbance and behavioral problems.
Collapse
Affiliation(s)
- Consuelo Basile
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Federica Gigliotti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Serena Cesario
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|