1
|
Gupta DD, Mishra S, Verma SS, Shekher A, Rai V, Awasthee N, Das TJ, Paul D, Das SK, Tag H, Chandra Gupta S, Hui PK. Evaluation of antioxidant, anti-inflammatory and anticancer activities of diosgenin enriched Paris polyphylla rhizome extract of Indian Himalayan landraces. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113842. [PMID: 33460752 DOI: 10.1016/j.jep.2021.113842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional medicinal plants have gained attention as a potential therapeutic agent to combat cancer and inflammation. Diosgenin rich fresh extracts of Paris polyphylla rhizome from Indian Himalaya is traditionally used as wound healing, anti-bleeding, anti-inflammatory and anti-cancer agent by the folk healers. AIM OF THE STUDY Present study was aimed to prepare two types of extracts from Paris polyphylla rhizome of Indian Himalayan landraces - 1. ethanolic extract of Paris polyphylla rhizome (EEPPR) and 2. Diosgenin enriched Paris polyphylla rhizome extract (DPPE), quantification of diosgenin content, and to evaluate their in vitro anti-oxidant, in vivo anti-inflammatory and in vitro cytotoxicity and anti-cancer activities of the DPPE. MATERIALS AND METHODS Diosgenin content of EEPPR was quantified through GC-MS while diosgenin content of DPPE was quantified through HPTLC, and the diosgenin yield from EEPPR and DPPE were compared. In vitro antioxidant activities of DPPE were performed using DPPH, NOD, RP and SOD assay while in vivo anti-inflammatory activity of DPPE were evaluated in dextran induced hind paw edema in rats. In vitro cytotoxicity and anti-cancer activities of DPPE were evaluated in human breast cancer cell lines (MCF-7, MDA-MB-231), cervical cancer cell lines (HeLa) and Hep-2 cell lines. RESULTS EEPPR obtained through cold extraction method using 70% ethanol showed maximum diosgenin content of 17.90% quantified through GC-MS while similar compounds pennogenin (3.29%), 7β-Dehydrodiosgenin (1.90%), 7-Ketodiosgenin acetate (1.14%), and 7 β-hydroxydiosgenin (0.55%) were detected in low concentration, and thus confirmed diosgenin as major and lead phytochemical. However, DPPE obtained through both cold and repeated hot extraction with the same solvent (70% ethanol) showed diosgenin content of 60.29% which is significantly higher (p < 0.001) than the diosgenin content in EEPPR. DPPE demonstrated significant in vitro antioxidant activities by dose-dependently quenched (p < 0.001) SOD free radicals by 76.66%, followed by DPPH (71.43%), NOD (67.35%), and RP (63.74%) at a max concentration of 2 μg/μl of ascorbic acid and test drugs with remarkable IC50 values (p < 0.01). Further, DPPE also showed potent anti-inflammatory activities by dose-dependently suppressed dextran induced paw edema in rats (p < 0.01) from 2 h to 4 h. DPPE suppressed the proliferation of MCF-7, MDA-MB-231, Hep-2 and HeLa cell lines. Maximum activity was observed in MCF-7 cells. The DPPE also induced apoptosis in MCF-7 cell lines as measured by AO/PI and DAPI staining, as well as DNA laddering, cell cycle analysis and phosphatidylserine externalization assay. The growth-inhibitory effect of DPPE on MCF-7 breast cancer cells was further confirmed from the colony-formation assay. DPPE upregulated expression of Bax and downregulated Bcl-2 and survivin mRNA transcripts. CONCLUSION DPPE obtained through both cold and repeated hot extraction using ethanol showed significantly higher content of diosgenin than the diosgenin content detected in EEPPR. However, diosgenin yield of both the extracts (EEPPR & DPPE) clearly confirmed diosgenin as major and lead phytochemical of Paris polyphylla rhizome of Indian Himalayan landraces. Further, DPPE also demonstrated potent in vitro anti-oxidative and in vivo anti-inflammatory activities and showed in vitro cytotoxicity and significant anti-cancer (apoptosis) effects in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Debmalya Das Gupta
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sumit Singh Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Tridip J Das
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Dipayan Paul
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Sanjib K Das
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| | - Hui Tag
- Pharmacognosy Research Laboratory, Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, 791112, Arunachal Pradesh, India.
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Pallabi K Hui
- Department of Biotechnology, National Institute of Technology (NIT)-Arunachal Pradesh, Yupia, 791112, Papum Pare, Arunachal Pradesh, India.
| |
Collapse
|
2
|
Wu XM, Zhang QZ, Wang YZ. Traceability the provenience of cultivated Paris polyphylla Smith var. yunnanensis using ATR-FTIR spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:132-145. [PMID: 30639599 DOI: 10.1016/j.saa.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
The conventional procedures, based on attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), have been developed for the origins traceability of cultivated Paris polyphylla Smith var. yunnanensis (PPY) samples with the help of partial least square discriminant analysis (PLS-DA) and random forest. In this study, a set of 219 batch cultivated PPY samples, containing the cultivation years of 5, 6 and 7, and covering the municipal districts of Chuxiong, Dali, Honghe, Lijiang and Yuxi in Yunnan Province, China, were used to build the discrimination models. Firstly, a visualized analysis was carried out by t-distributed stochastic neighbor embedding (t-SNE) to reduce each data point in a two-dimensional map and make a knowledge of the sample distribution tendency. Secondly, the single spectra data sets of Paridis rhizome and leaf tissues, and the combination of these two data sets with variable selection (mid-level data fusion strategy), were used to establish PLS-DA and random forest models, and parallelly compared the model performance. Results demonstrated that the discrimination ability of PLS-DA preceded the random forest model, and the classification performance was remarkably improved after mid-level data fusion. These results verified each other by 5-, 6- and 7-year old Paridis samples and indicated that the model performance established in the present study was reliable. Besides, five agronomic characters, including the plant height, dry weight of rhizome and leaf tissues, and the allocation of rhizome and leaf were determined and analyzed, results of which indicated that the dry weight and their allocation was significantly different among various origins and fluctuated with the cultivation years. This study was using a comprehensive and green analytical method to discriminate the cultivated Paridis according to their provenances, which was simultaneously benefited for the appropriate cultivation areas selection based on the dry weight of rhizome tissues.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Qing-Zhi Zhang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yuan-Zhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|