1
|
Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease via inhibiting oxidative stress. BMC Complement Med Ther 2022; 22:40. [PMID: 35144603 PMCID: PMC8832724 DOI: 10.1186/s12906-022-03524-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background Parkinson’s disease (PD) is a multifactorial movement disorder with the progressive degeneration of the nigrostriatal system that impairs patients’ movement ability. Oxidative stress has been found to affect the etiology and pathogenesis of PD. Thymol, a monoterpenic phenol, is one of the most important dietary constituents in thyme species. It has been used in traditional medicine and possesses some properties including antioxidant, free radical scavenging, anti-inflammatory. In this study, in vitro and in vivo experiments were performed with the thymol in order to investigate its potential neuroprotective effects in models of PD. Methods The present study aimed to evaluate the therapeutic potential of thymol in 6-hydroxydopamine (6-OHDA)-induced cellular and animal models of PD. Results Post-treatment with thymol in vitro was found to protect PC12 cells from toxicity induced by 6-OHDA administration in a dose-dependent manner by (1) increasing cell viability and (2) reduction in intracellular reactive oxygen species, intracellular lipid peroxidation, and annexin-positive cells. In vivo, post-treatment with thymol was protective against neurodegenerative phenotypes associated with systemic administration of 6-OHDA. Results indicated that thymol improved the locomotor activity, catalepsy, akinesia, bradykinesia, and motor coordination and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Increased level of reduced glutathione content and a decreased level of MDA (malondialdehyde) in striatum were observed in the 6-OHDA rats post-treated with thymol. Conclusions Collectively, our findings suggest that thymol exerts protective effects, possibly related to an anti-oxidation mechanism, in these in vitro and in vivo models of Parkinson’s disease.
Collapse
|
2
|
Feng CW, Chen NF, Sung CS, Kuo HM, Yang SN, Chen CL, Hung HC, Chen BH, Wen ZH, Chen WF. Therapeutic Effect of Modulating TREM-1 via Anti-inflammation and Autophagy in Parkinson's Disease. Front Neurosci 2019; 13:769. [PMID: 31440123 PMCID: PMC6691936 DOI: 10.3389/fnins.2019.00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common age-related neurodegenerative diseases, and neuroinflammation has been identified as one of its key pathological characteristics. Triggering receptors expressed on myeloid cells-1 (TREM-1) amplify the inflammatory response and play a role in sepsis and cancer. Recent studies have demonstrated that the attenuation of TREM-1 activity produces cytoprotective and anti-inflammatory effects in macrophages. However, no study has examined the role of TREM-1 in neurodegeneration. We showed that LP17, a synthetic peptide blocker of TREM-1, significantly inhibited the lipopolysaccharide (LPS)-induced upregulation of proinflammatory cascades of inducible nitric oxide synthase (iNOS), cyclooxygenase-2, and nuclear factor-kappa B. Moreover, LP17 enhanced the LPS-induced upregulation of autophagy-related proteins such as light chain-3 and histone deacetylase-6. We also knocked down TREM-1 expression in a BV2 cell model to further confirm the role of TREM-1. LP17 inhibited 6-hydroxydopamine-induced locomotor deficit and iNOS messenger RNA expression in zebrafish. We also observed therapeutic effects of LP17 administration in 6-hydroxydopamine-induced PD syndrome using a rat model. These data suggest that the attenuation of TREM-1 could ameliorate neuroinflammatory responses in PD and that this neuroprotective effect might occur via the activation of autophagy and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Chien-Wei Feng
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan.,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, E-Da Hospital, Kaohsiung City, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Chien-Liang Chen
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan.,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.,Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
3
|
Haddadi R, Eyvari Brooshghalan S, Farajniya S, Mohajjel Nayebi A, Sharifi H. Short-Term Treatment with Silymarin Improved 6-OHDA-Induced Catalepsy and Motor Imbalance in Hemi-Parkisonian Rats. Adv Pharm Bull 2015; 5:463-9. [PMID: 26819917 DOI: 10.15171/apb.2015.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/26/2015] [Accepted: 06/13/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Parkinson's disease (PD) is a common neurodegenerative disorder characterized by disabling motor abnormalities, which include tremor, muscle stiffness, paucity of voluntary movements, and postural instability. Silymarin (SM) or milk thistle extract, is known to own antioxidative, anti-apoptotic, anti-inflammatory and neuroprotective effects. In the present study, we investigated the effect of intraperitoneal (i.p) administration of SM, on 6-OHDA-induced motor-impairments (catalepsy and imbalance) in the rats. METHODS Experimental model of PD was induced by unilateral infusion of 6-hydroxydopamine (6-OHDA; 8 μg/2 μl/rat) into the central region of the substantia nigra pars compacta (SNc). Catalepsy and motor coordination were assessed by using of bar test and rotarod respectively. RESULTS The results showed a significant (p<0.001) increase in catalepsy of 6-OHDA-lesioned rats whereas; in SM (100, 200 and 300 mg/kg, i.p for 5 days) treated hemi-parkinsonian rats catalepsy was decreased markedly (p<0.001). Furthermore, there was a significant (p<0.001) increase in motor-imbalance of 6-OHDA-lesioned rats. SM improved motor coordination significantly (p<0.001) in a dose dependent manner and increased motor balance. CONCLUSION In conclusion, we found that short-term treatment with SM could improve 6-OHDA-induced catalepsy and motor imbalance in rats. We suggest that SM can be used as adjunctive therapy along with commonly used anti-parkinsonian drugs. However, further clinical trial studies should be carried out to prove this hypothesis.
Collapse
Affiliation(s)
- Rasool Haddadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | | | - Safar Farajniya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Mohajjel Nayebi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Clinical Psychiatry Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamdolah Sharifi
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
4
|
Sharifi H, Mohajjel Nayebi A, Farajnia S, Haddadi R. Effect of Buspirone, Fluoxetine and 8-OH-DPAT on Striatal Expression of Bax, Caspase-3 and Bcl-2 Proteins in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rats. Adv Pharm Bull 2015; 5:491-5. [PMID: 26819921 DOI: 10.15171/apb.2015.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/04/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The exact pathogenesis of sporadic parkinson's disease (PD) is still unclear. Numerous evidences suggest involvement of apoptosis in the death of dopaminergic neurons. In this study we investigated the effect of sub-chronic administration of buspirone, fluoxetine and 8-hydroxy-2-[di-n-propylamino]tetralin (8-OH-DPAT) in 6-hydroxydopamine (6-OHDA)-lesioned rats and assayed striatal concentrations of apoptotic (Bax, Caspase3) and anti-apoptotic (Bcl-2) proteins. METHODS 6-OHDA (8μg/2μl/rat) was injected unilaterally into the central region of the substantia nigra pars copmacta (SNc) of male Wistar rats and then, after 21 days lesioned rats were treated with intraperitonel (i.p) 1 mg/kg injections of buspirone, fluoxetine and 8-OH-DPAT for 10 consecutive days. Striatum of rats was removed at tenth day of drugs administration and were analyzed by western blotting method to measure Bax, caspase3 and Bcl-2 expression. RESULTS The results showed that the expression of Bax and caspase3 proteins was increased three weeks after 6-OHDA injection while they were decreased significantly in parkinsonian rats which were treated by buspirone, fluoxetine and 8-OH-DPAT. Bcl-2 was decreased and increased in parkinsonian rats and parkinsonian rats treated with buspirone, fluoxetine and 8-OH-DPAT, respectively. CONCLUSION Our study indicates that sub-chronic administration of serotonergic drugs such as buspirone, fluoxetine and 8-OH-DPAT restores striatal concentration of apoptotic and anti-apoptotic factors to the basal levels of normal non-lesioned rats. We suggest that these drugs can be used as a potential adjunctive therapy in PD through attenuating neuronal apoptotic process.
Collapse
Affiliation(s)
- Hamdollah Sharifi
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Mohajjel Nayebi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
5
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|