1
|
Bioactive Constituents and Toxicological Evaluation of Selected Antidiabetic Medicinal Plants of Saudi Arabia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7123521. [PMID: 35082904 PMCID: PMC8786507 DOI: 10.1155/2022/7123521] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this review is to summarize the available antidiabetic medicinal plants in the Kingdom of Saudi Arabia with its phytoconstituents and toxicological findings supporting by the latest literature. Required data about medicinal plants having antidiabetic activities and growing in the Kingdom of Saudi Arabia were searched/collected from the online databases including Wiley, Google, PubMed, Google Scholar, ScienceDirect, and Scopus. Keywords used in search are in vivo antidiabetic activities, flora of Saudi Arabia, active ingredients, toxicological evaluations, and medicinal plants. A total of 50 plant species belonging to 27 families were found in the flora of Saudi Arabia. Dominant family was found Lamiaceae with 5 species (highest) followed by Moraceae with 4 species. β-Amyrin, β-sitosterol, stigmasterol, oleanolic acid, ursolic acid, rutin, chlorogenic acid, quercetin, and kaempferol are the very common bioactive constituents of these selected plant species. This paper has presented a list of antidiabetic plants used in the treatment of diabetes mellitus. Bioactive antidiabetic phytoconstituents which showed that these plants have hypoglycemic effects and highly recommended for further pharmacological purposes and to isolate/identify antidiabetes mellitus (anti-DM) active agents also need to investigate the side effects of active ingredients.
Collapse
|
2
|
Wang Y, Zhang K, Qi X, Yang G, Wang H, Zhang Z, Yang B. Effects of propofol on LC3II and mTOR/p-mTOR expression during ischemia-reperfusion myocardium injury in rats with type 2 diabetes mellitus. Exp Ther Med 2020; 19:2441-2448. [PMID: 32256720 PMCID: PMC7098214 DOI: 10.3892/etm.2020.8499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023] Open
Abstract
To investigate the effects of propofol on myocardial ischemia reperfusion in rats with type 2 diabetes, male adult rats were divided into five groups: Sham-operation (CC), ischemia-reperfusion (CI), low-dose propofol (LP), moderate-dose propofol (MP) and high-dose propofol (HP). The LP, MP and HP groups were administered with 6, 12 and 24 mg/kg/h propofol, respectively, prior to occlusion. Heart rate (HR), left ventricular systolic pressure (LVSP) and the rate (dp/dt max) of left ventricular pressure rise in early systole (±dp/dt max) were recorded. The role of autophagy was also studied by measuring the levels of superoxide dismutase (SOD), malondialdehyde (MDA), autophagy marker protein LC3II, mammalian target of rapamycin (mTOR)/phosphorylate (p)-mTOR and cardiac troponin T (cTnT). The myocardial morphological features were assessed using light and electron microscopy. The present results demonstrated that the HR, LVSP, +dp/dt and -dp/dt levels in the propofol groups (LP, MP and HP) were significantly increased (P<0.05) when compared with the CI group. The myocardial cells in the MP group showed mild edematous changes and partially dissolved mitochondrial cristae and membrane rupture. SOD, cTnT and MDA levels were significantly decreased (P<0.05), mTOR expression decreased significantly (P<0.05) and p-mTOR expression increased significantly in the MP group (P<0.05). The present study demonstrated the protective effects of propofol in T2DM rats exhibiting MIRI, with an optimal protective effect at an infusion rate of 12 mg/kg/h. Additionally, the results revealed that propofol led to significant reductions in LC3II and mTOR serum levels and the inhibition of autophagy in myocardial cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Kecheng Zhang
- Department of Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiuru Qi
- Department of Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Guang Yang
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Hongjie Wang
- Department of Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhe Zhang
- Hebei Medical Science and Technology Development Research Center, Shijiazhuang, Hebei 051000, P.R. China
| | - Baofeng Yang
- Health and Family Planning Commission of Hebei, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
3
|
Liu JD, Chen HJ, Wang DL, Wang H, Deng Q. Pim-1 Kinase Regulating Dynamics Related Protein 1 Mediates Sevoflurane Postconditioning-induced Cardioprotection. Chin Med J (Engl) 2017; 130:309-317. [PMID: 28139514 PMCID: PMC5308013 DOI: 10.4103/0366-6999.198922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND It is well documented that sevoflurane postconditioning (SP) has a significant myocardial protection effect. However, the mechanisms underlying SP are still unclear. In the present study, we investigated the hypothesis that the Pim-1 kinase played a key role in SP-induced cardioprotection by regulating dynamics-related protein 1 (Drp1). METHODS A Langendorff model was used in this study. Seventy-two rats were randomly assigned into six groups as follows: CON group, ischemia reperfusion (I/R) group, SP group , SP+proto-oncogene serine/threonine-protein kinase 1 (Pim-1) inhibitor II group, SP+dimethylsufoxide group, and Pim-1 inhibitor II group (n = 12, each). Hemodynamic parameters and infarct size were measured to reflect the extent of myocardial I/R injury. The expressions of Pim-1, B-cell leukemia/lymphoma 2 (Bcl-2) and cytochrome C (Cyt C) in cytoplasm and mitochondria, the Drp1 in mitochondria, and the total Drp1 and p-Drp1ser637 were measured by Western blotting. In addition, transmission electron microscope was used to observe mitochondrial morphology. The experiment began in October 2014 and continued until July 2016. RESULTS SP improved myocardial I/R injury-induced hemodynamic parametric changes, cardiac function, and preserved mitochondrial phenotype and decreased myocardial infarct size (24.49 ± 1.72% in Sev group compared with 41.98 ± 4.37% in I/R group; P< 0.05). However, Pim-1 inhibitor II significantly (P < 0.05) abolished the protective effect of SP. Western blotting analysis demonstrated that, compared with I/R group, the expression of Pim-1 and Bcl-2 in cytoplasm and mitochondria as well as the total p-Drp1ser637 in Sev group (P < 0.05) were upregulated. Meanwhile, SP inhibited Drp1 compartmentalization to the mitochondria followed by a reduction in the release of Cyt C. Pretreatment with Pim-1 inhibitor II significantly (P < 0.05) abolished SP-induced Pim-1/p-Drp1ser637 signaling activation. CONCLUSIONS These findings suggested that SP could attenuate myocardial ischemia-reperfusion injury by increasing the expression of the Pim-1 kinase. Upregulation of Pim-1 might phosphorylate Drp1 and prevent extensive mitochondrial fission through Drp1 cytosolic sequestration.
Collapse
Affiliation(s)
- Jin-Dong Liu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University; Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui-Juan Chen
- Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Da-Liang Wang
- Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Wang
- Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qian Deng
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University; Department of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
4
|
Mahmoudabady M, Lashkari M, Niazmand S, Soukhtanloo M. Cardioprotective effects of Achillea wilhelmsii on the isolated rat heart in ischemia-reperfusion. J Tradit Complement Med 2017; 7:501-507. [PMID: 29034199 PMCID: PMC5634733 DOI: 10.1016/j.jtcme.2016.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 12/30/2016] [Indexed: 01/24/2023] Open
Abstract
Context There are some reports about protective effects of Achillea on the heart. Objective We investigated the effect of Achillea wilhelmsii extract on cardiac function during ischemia–reperfusion (I/R) injury in the isolated rat heart. Materials and methods 60 male Wistar rats were randomly divided into 6 groups; 1: Control group, 2: Control-ischemia (CI) 3: vitamin C (10 mg/kg), 4–6: Extract groups (E 100, E 200 and E 400 mg/kg). The animals received normal saline, vitamin C or A. wilhelmsii extract orally for 4 weeks. At the end of the treatment, the hearts were subjected to in vitro I/R Injury (20 min of global ischemia, followed by 40 min of reperfusion, Langendorff's mode). Heart rate (HR) and left ventricular pressure (LVP) were measured using a pressure transducer connected to a data acquisition system. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities in the effluent were measured to determine the myocardial injury degree. The malondialdehyde (MDA), total thiol groups (-SH), superoxide anion dismutase (SOD) and catalase (CAT) in myocardial tissue were detected to determine the oxidative stress degree. Results Pretreatment with Achillea wilhlemsii significantly decreased the LDH, CK activities, and MDA level, while it increased the LVDP, ±dp/dtmax, rate-pressure product (RPP), SH groups, SOD and CAT activities, and also the coronary artery flow. Discussion and conclusion Our findings indicated that Achillea wilhelmsii could provide protection for heart against the I/R injury which may be related to the improvement of myocardial oxidative stress states.
Collapse
Affiliation(s)
- M Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation, Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Lashkari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Iran
| | - S Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Garjani A, Vaez H, Delazar A, Rameshrad M, Heshmati Afshar F, Asgharian P. Cardioprotective Effects of Methanolic Extract of Scrophularia frigida on Ischemia-Reperfusion-Induced Injuries in Isolated Rat Heart. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:35-45. [PMID: 29844774 PMCID: PMC5963644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myocardial infarction is a common presentation of coronary artery disease and the leading cause of death worldwide. The present study investigated potential resistance to ischemia-reperfusion (I/R) injuries following administration of methanolic (MeOH) extract of Scrophularia frigida (S. frigida) in isolated rat heart. Male Wistar rat hearts (n= 8-10) were isolated and allowed to equilibrate for 20 min, and then subjected to 30 min regional ischemia followed by 120 min reperfusion. In the control group, Krebs-Henseleit (K/H) solution was perfused. However, in the treatment groups K/H solution containing 1, 5, and 10 µg/cc of extract was infused. In addition, total phenol, total flavonoid content and antioxidant property were evaluated and extract was subjected to phytochemical analysis. Administration of extract improved the flow rate, developed pressure as well as max and min left ventricular dp/dt. Number and duration of VT were significantly reduced by all extract concentrations in ischemic phase. In reperfusion phase, significant decreases in single and total arrhythmias were seen. Furthermore, concentrations of 5 and 10 µg/cc of extract remarkably decreased the infarct size. Generally, the methanolic extract of S. frigida exhibited a protective effect against I/R-induced injures, which might be due to the antioxidant activiies of iridoids and phenolics.
Collapse
Affiliation(s)
- Alireza Garjani
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Haleh Vaez
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Delazar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ,Department of pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Rameshrad
- Biotechnology research center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Parina Asgharian
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ,Department of pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ,Corresponding author: E-mail:
| |
Collapse
|