1
|
Liu M, Li T, Zhao M, Qian C, Wang R, Liu L, Xiao Y, Xiao H, Tang X, Liu H. Nanoradiosensitizers in glioblastoma treatment: recent advances and future perspectives. Nanomedicine (Lond) 2024; 19:2229-2249. [PMID: 39311492 PMCID: PMC11487349 DOI: 10.1080/17435889.2024.2395238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 10/16/2024] Open
Abstract
Glioblastoma (GBM), a highly invasive type of brain tumor located within the central nervous system, manifests a median survival time of merely 14.6 months. Radiotherapy kills tumor cells through focused high-energy radiation and has become a crucial treatment strategy for GBM, especially in cases where surgical resection is not viable. However, the presence of radioresistant tumor cells limits its clinical effectiveness. Radioresistance is a key factor of treatment failure, prompting the development of various therapeutic strategies to overcome this challenge. With the rapid development of nanomedicine, nanoradiosensitizers provide a novel approach to enhancing the effectiveness of radiotherapy. In this review, we discuss the reasons behind GBM radio-resistance and the mechanisms of radiotherapy sensitization. Then we summarize the primary types of nanoradiosensitizers and recent progress in their application for the radiosensitization of GBM. Finally, we elucidate the factors influencing their practical implementation, along with the challenges and promising prospects associated with multifunctional nanoradiosensitizers.
Collapse
Affiliation(s)
- Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Taiping Li
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Xiao
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Quantification of Nanoscale Dose Enhancement in Gold Nanoparticle-Aided External Photon Beam Radiotherapy. Cancers (Basel) 2022; 14:cancers14092167. [PMID: 35565296 PMCID: PMC9102439 DOI: 10.3390/cancers14092167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
The recent progress in Nanotechnology has introduced Gold Nanoparticles (AuNPs) as promising radiosensitizing agents in radiation oncology. This work aims to estimate dose enhancement due to the presence of AuNPs inside an irradiated water region through Monte Carlo calculations. The GATE platform was used to simulate 6 MV photon histories generated from a TrueBeam® linear accelerator with and without a Flattening Filter (FF) and model AuNPs clusters. The AuNPs size, concentration and distribution pattern were examined. To investigate different clinical irradiation conditions, the effect of field size, presence of FF and placement of AuNPs in water were evaluated. The range of Dose Enhancement Factors (DEF = DoseAu/DoseWater) calculated in this study is 0.99 ± 0.01-1.26 ± 0.02 depending on photon beam quality, distance from AuNPs surface, AuNPs size and concentration and pattern of distribution. The highest DEF is reported for irradiation using un-flattened photon beams and at close distances from AuNPs. The obtained findings suggest that dose deposition could be increased in regions that represent whole cells or subcellular targets (mitochondria, cell nucleus, etc.). Nevertheless, further and consistent research is needed in order to make a step toward AuNP-aided radiotherapy in clinical practice.
Collapse
|
3
|
Rabus H, Li WB, Villagrasa C, Schuemann J, Hepperle PA, de la Fuente Rosales L, Beuve M, Di Maria S, Klapproth AP, Li CY, Poignant F, Rudek B, Nettelbeck H. Intercomparison of Monte Carlo calculated dose enhancement ratios for gold nanoparticles irradiated by X-rays: Assessing the uncertainty and correct methodology for extended beams. Phys Med 2021; 84:241-253. [PMID: 33766478 DOI: 10.1016/j.ejmp.2021.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Results of a Monte Carlo code intercomparison exercise for simulations of the dose enhancement from a gold nanoparticle (GNP) irradiated by X-rays have been recently reported. To highlight potential differences between codes, the dose enhancement ratios (DERs) were shown for the narrow-beam geometry used in the simulations, which leads to values significantly higher than unity over distances in the order of several tens of micrometers from the GNP surface. As it has come to our attention that the figures in our paper have given rise to misinterpretation as showing 'the' DERs of GNPs under diagnostic X-ray irradiation, this article presents estimates of the DERs that would have been obtained with realistic radiation field extensions and presence of secondary particle equilibrium (SPE). These DER values are much smaller than those for a narrow-beam irradiation shown in our paper, and significant dose enhancement is only found within a few hundred nanometers around the GNP. The approach used to obtain these estimates required the development of a methodology to identify and, where possible, correct results from simulations whose implementation deviated from the initial exercise definition. Based on this methodology, literature on Monte Carlo simulated DERs has been critically assessed.
Collapse
Affiliation(s)
- H Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - W B Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - C Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - J Schuemann
- Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - P A Hepperle
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; Leibniz Universität Hannover, Hannover, Germany
| | | | - M Beuve
- Institut de Physique des 2 Infinis, Université Claude Bernard Lyon 1, Villeurbanne, France; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - A P Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Y Li
- Department of Engineering Physics, Tsinghua University, Beijing, China; Nuctech Company Limited, Beijing, China
| | - F Poignant
- Institut de Physique des 2 Infinis, Université Claude Bernard Lyon 1, Villeurbanne, France; NASA Langley Research Center, Hampton, VA, USA
| | - B Rudek
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA; Perlmutter Cancer Center, NYU Langone Health, New York City, NY, USA
| | - H Nettelbeck
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| |
Collapse
|
4
|
A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl Radiat Isot 2021; 171:109638. [PMID: 33631502 DOI: 10.1016/j.apradiso.2021.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Dose enhancement due to gold nanoparticles (GNPs) has been quantified experimentally and through Monte Carlo simulations for external beam radiation therapy energies of 6 and 18 MV. The highest enhancement was observed for the 18 MV beam at the highest GNP concentration tested, amounting to a DEF of 1.02. DEF is shown to increase with increasing concentration of gold and increasing energy in the megavoltage energy range. The largest difference in measured vs. simulated DEF across all data sets was 0.3%, showing good agreement.
Collapse
|
5
|
Korpanty J, Parent LR, Gianneschi NC. Enhancing and Mitigating Radiolytic Damage to Soft Matter in Aqueous Phase Liquid-Cell Transmission Electron Microscopy in the Presence of Gold Nanoparticle Sensitizers or Isopropanol Scavengers. NANO LETTERS 2021; 21:1141-1149. [PMID: 33448858 DOI: 10.1021/acs.nanolett.0c04636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we describe the radiolytic environment experienced by a polymer in water during liquid-cell transmission electron microscopy (LCTEM). We examined the radiolytic environment of aqueous solutions of poly(ethylene glycol) (PEG, 2400 g/mol) in the presence of sensitizing gold nanoparticles (GNPs, 100 nm) or radical scavenging isopropanol (IPA). To quantify polymer damage, we employed post-mortem analysis via matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). This approach confirms IPA (1-10% w/v) can significantly mitigate radiolysis-induced damage to polymers in water, while GNPs significantly enhance damage. We couple LCTEM experiments with simulations to provide a generalizable strategy for assessing radiolysis mitigation or enhancement. This study highlights the caution required for LCTEM experiments on inorganic nanoparticles where solution phase properties of surrounding organic materials or the solvent itself are under investigation. Furthermore, we anticipate an increased use of scavengers for LCTEM studies of all kinds.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers (Basel) 2020; 12:E2021. [PMID: 32718058 PMCID: PMC7464732 DOI: 10.3390/cancers12082021] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, a growing interest in the improvement of radiation therapies has led to the development of gold-based nanomaterials as radiosensitizer. Although the radiosensitization effect was initially attributed to a dose enhancement mechanism, an increasing number of studies challenge this mechanistic hypothesis and evidence the importance of chemical and biological contributions. Despite extensive experimental validation, the debate regarding the mechanism(s) of gold nanoparticle radiosensitization is limiting its clinical translation. This article reviews the current state of knowledge by addressing how gold nanoparticles exert their radiosensitizing effects from a transdisciplinary perspective. We also discuss the current and future challenges to go towards a successful clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Anne-Catherine Heuskin
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| |
Collapse
|
7
|
Babaye Abdollahi B, Malekzadeh R, Pournaghi Azar F, Salehnia F, Naseri AR, Ghorbani M, Hamishehkar H, Farajollahi AR. Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic Review. Adv Pharm Bull 2020; 11:212-223. [PMID: 33880343 PMCID: PMC8046397 DOI: 10.34172/apb.2021.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, high atomic number nanoparticles (NPs) have emerged as promising radio-enhancer agents for cancer radiation therapy due to their unique properties. Multi-disciplinary studies have demonstrated the potential of NPs-based radio-sensitizers to improve cancer therapy and tumor control at cellular and molecular levels. However, studies have shown that the dose enhancement effect of the NPs depends on the beam energy, NPs type, NPs size, NPs concentration, cell lines, and NPs delivery system. It has been believed that radiation dose enhancement of NPs is due to the three main mechanisms, but the results of some simulation studies failed to comply well with the experimental findings. Thus, this study aimed to quantitatively evaluate the physical, chemical, and biological factors of the NPs. An organized search of PubMed/Medline, Embase, ProQuest, Scopus, Cochrane and Google Scholar was performed. In total, 77 articles were thoroughly reviewed and analyzed. The studies investigated 44 different cell lines through 70 in-vitro and 4 in-vivo studies. A total of 32 different types of single or core-shell NPs in different sizes and concentrations have been used in the studies.
Collapse
Affiliation(s)
- Behnaz Babaye Abdollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Pournaghi Azar
- Department of Operative Density, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salehnia
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Naseri
- Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Farajollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Keshavarz S, Sardari D. Different distributions of gold nanoparticles on the tumor and calculation of dose enhancement factor by Monte Carlo simulation. NUCLEAR ENERGY AND TECHNOLOGY 2019. [DOI: 10.3897/nucet.5.39096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gold nanoparticles can be used to increase the dose of the tumor due to its high atomic number as well as being free from apparent toxicity. The aim of this study is to evaluate the effect of distribution of gold nanoparticles models, as well as changes in nanoparticle sizes and spectrum of radiation energy along with the effects of nanoparticle penetration into surrounding tissues in dose enhancement factor DEF. Three mathematical models were considered for distribution of gold nanoparticles in the tumor, such as 1-uniform, 2- non-uniform distribution with no penetration margin and 3- non-uniform distribution with penetration margin of 2.7 mm of gold nanoparticles. For this purpose, a cube-shaped water phantom of 50 cm size in each side and a cube with 1 cm side placed at depth of 2 cm below the upper surface of the cubic phantom as the tumor was defined, and then 3 models of nanoparticle distribution were modeled. MCNPX code was used to simulate 3 distribution models. DEF was evaluated for sizes of 20, 25, 30, 50, 70, 90 and 100 nm of gold nanoparticles, and 50, 95, 250 keV and 4 MeV photon energies. In uniform distribution model the maximum DEF was observed at 100 nm and 50 keV being equal to 2.90, in non-uniform distribution with no penetration margin, the maximum DEF was measured at 100 nm and 50 keV being 1.69, and in non-uniform distribution with penetration margin of 2.7 mm, the maximum DEF was measured at 100 nm and 50 keV as 1.38, and the results have been showed that the dose was increased by injecting nanoparticles into the tumor. It is concluded that the highest DEF could be achieved in low energy photons and larger sizes of nanoparticles. Non-uniform distribution of gold nanoparticles can increase the dose and also decrease the DEF in comparison with the uniform distribution. The non-uniform distribution of nanoparticles with penetration margin showed a lower DEF than the non-uniform distribution without any margin and uniform distribution. Meanwhile, utilization of the real X-ray spectrum brought about a smaller DEF in comparison to mono-energetic X-ray photons.
Collapse
|
9
|
Bassiri N, Gray T, David S, Yogeshkumar Patel D, Locker A, Rasmussen K, Papanikolaou N, Mayer KM, Kirby N. Technical Note: Film-based measurement of gold nanoparticle dose enhancement for 192 Ir. Med Phys 2019; 47:260-266. [PMID: 31660622 DOI: 10.1002/mp.13884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The purpose of this work is to introduce a simple yet accurate technique to measure the dose enhancement factor (DEF) of a citrate-capped gold nanoparticle (GNP) solution using EBT3 film in an 192 Ir setup. METHODS Dose enhancement factor is the ratio of absorbed dose in a solution compared to absorbed dose in water, assuming identical irradiation parameters. Citrate-capped GNPs were synthesized. An acrylic apparatus was constructed such that the EBT3 film was placed in charged particle equilibrium within the GNP solution with 0.28%, 0.56%, and 0.77% gold by mass. Sets of 12 dose measurements were collected for each GNP concentration as well as for water. The expected value of DEF was also calculated with the effective mass absorption coefficient of the GNP solution and water for an 192 Ir spectrum. Furthermore, Burlin cavity correction factors were calculated and experimentally verified. Experimental verification of the cavity correction was performed by measuring DEF using stacks of 1, 3, and 5 sheets of film and extrapolating the DEF to 0 sheets of film. RESULTS Experimental cavity corrections agreed with those calculated with the Burlin cavity formalism. The calculated DEF was 1.013, 1.027, and 1.037 for the 0.28%, 0.56%, and 0.77% gold by mass GNP solutions, respectively. The corresponding uncorrected DEF measurement values were 1.013 ± 0.006, 1.024 ± 0.010, and 1.032 ± 0.006, respectively. When applying the Burlin cavity formalism, the final corrected DEF measurement values were 1.016 ± 0.006, 1.029 ± 0.010, and 1.039 ± 0.006, respectively. CONCLUSIONS The experimental cavity correction results agreed with the theoretical Burlin calculations, which allowed for the Burlin corrections to be performed for all GNP concentrations and measured DEF values. The adjusted DEF values agreed with the theoretical calculations. Thus, these results indicate that a Burlin cavity calculation can be applied to correct film-based DEF measurements for 192 Ir.
Collapse
Affiliation(s)
- Nema Bassiri
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tara Gray
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Shaquan David
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Devanshi Yogeshkumar Patel
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Andrew Locker
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kathryn M Mayer
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Malekzadeh R, Mehnati P, Sooteh MY, Mesbahi A. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology. Radiol Phys Technol 2019; 12:325-334. [PMID: 31385155 DOI: 10.1007/s12194-019-00529-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that the particle size of the shielding material and photon energy has significant effects on the efficiency of radiation-shielding materials. The purpose of the current study was to investigate the shielding properties of the bismuth-silicon (Bi-Si) composite containing varying percentages of micro- and nano-sized Bi particles for low-energy X-rays. Radiation composite shields composed of nano- and micro-sized Bi particles in Si-based matrix were constructed. The mass attenuation coefficients of the designed shields were experimentally assessed for diagnostic radiology energy range. In addition, the mass attenuation coefficients of the composite were comprehensively investigated using the MCNPX Monte Carlo (MC) code and XCOM. The X-ray attenuation for two different micro-sized Bi composites of radii of 50 µm and 0.50 µm showed enhancement in the range of 37-79% and 5-24%, respectively, for mono-energy photons (60-150 keV). Furthermore, the experimental and MC results indicated that nano-structured composites had higher photon attenuation properties (approximately 11-18%) than those of micro-sized samples for poly-energy X-ray photons. The amount of radiation attenuation for lower energies was more than that of higher energies. Thus, it was found that the shielding properties of composites were considerably strengthened by adding Bi nano-particles for lower energy photons.
Collapse
Affiliation(s)
- Reza Malekzadeh
- Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mehnati
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi Sooteh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Attar Street, Tabriz, Iran.
| |
Collapse
|
11
|
Hashemi S, Aghamiri MR, Kahani M, Jaberi R. Investigation of gold nanoparticle effects in brachytherapy by an electron emitter ophthalmic plaque. Int J Nanomedicine 2019; 14:4157-4165. [PMID: 31239674 PMCID: PMC6560204 DOI: 10.2147/ijn.s205814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background: During decades, all improvements and developments in radiation therapy technologies have been focused on its main goal: maximize the dose in the tumor and minimize it in surrounding normal tissues. Recently, scientists have some approaches to nanoparticles, especially gold nanoparticles (GNPs), for dose localization. Purpose: Herein, the effect of GNPs in combination with electron brachytherapy in a model of eye tumor has been investigated. Materials and methods: Monte Carlo simulation was utilized and a complete anatomical model of the eye, a tumor with 5 mm thick, and a type of Ruthenium-106 beta emitter ophthalmic plaque were simulated. Simulation results have been validated by a Plexiglas eye phantom and film dosimetry, experimentally. Results: The results showed using GNPs causes the dose amplification in 2 mm from the plaque surface which the higher concentration has the higher enhancement. At more distances, Dose Enhancement Factors (DEFs) have the negative amounts, so that total delivered dose to the tumor has decreased with increasing of Au concentrations and the dose of organ at risk like sclera has increased. Conclusion: Therefore, using of GNPs along with a 106Ru/106Rh ocular plaque, as an electron emitter source, is a good choice only for superficial lesions, and it is not recommended for deeper tumors due to the parameters of radiation treatment and delivered dose to the tissues.
Collapse
Affiliation(s)
- S Hashemi
- Radiation Medicine Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - MR Aghamiri
- Radiation Medicine Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - M Kahani
- Radiation Medicine Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - R Jaberi
- Cancer Institute, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
12
|
Farahani S, Riyahi Alam N, Haghgoo S, Khoobi M, Geraily G, Gorji E. Dosimetry and Radioenhancement Comparison of Gold Nanoparticles in Kilovoltage and Megavoltage Radiotherapy using MAGAT Polymer Gel Dosimeter. J Biomed Phys Eng 2019; 9:199-210. [PMID: 31214525 PMCID: PMC6538906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/12/2017] [Indexed: 11/12/2022]
Abstract
BACKGROUND Numerous unique characteristics of the nanosized gold, including high atomic number, low toxicity, and high biocompatibility make it one of the most appropriate nanostructures to boost radiotherapy efficacy. Many in-vivo and in-vitro investigations have indicated that gold nanoparticles (AuNPs) can significantly increase tumor injuries in low kilovoltage radiotherapy. While deep-lying tumors require much higher energy levels with greater penetration power, and investigations carried out in megavoltage energy range show contradictory results. OBJECTIVE In this study, we quantitatively assess and compare dose enhancement factors (DEFs) obtained through AuNPs under radiation of Cobalt-60 source (1.25MeV) versus Iridium-192 source (380 KeV) using MAGAT gel dosimeter. MATERIAL AND METHODS MAGAT polymer gel in both pure and combined with 0.2 mM AuNPs was synthesized. In order to quantify the effect of energy on DEF, irradiation was carried out by Co-60 external radiotherapy and Ir-192 internal radiotherapy. Finally, readings of irradiated and non-irradiated gels were performed by MR imaging. RESULTS The radiation-induced R2 (1/T2) changes of the gel tubes doped with AuNPs compared to control samples, upon irradiation of beams released by Ir-192 source showed a significant dose enhancement (15.31% ±0.30) relative to the Co-60 external radiotherapy (5.85% ±0.14). CONCLUSION This preliminary study suggests the feasibility of using AuNPs in radiation therapy (RT), especially in low-energy sources of brachytherapy. In addition, MAGAT polymer gel, as a powerful dosimeter, could be used for 3D visualization of radiation dose distribution of AuNPs in radiotherapy.
Collapse
Affiliation(s)
- S. Farahani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
,Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - N. Riyahi Alam
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - S. Haghgoo
- Pharmaceutical Department, Food & Drug Laboratory Research Center, Food & Drug Organization (FDO), Tehran, Iran.
| | - M. Khoobi
- Nanobiomaterials Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 141761411, Iran
,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Gh. Geraily
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - E. Gorji
- Pharmaceutical Department, Food & Drug Laboratory Research Center, Food & Drug Organization (FDO), Tehran, Iran.
| |
Collapse
|
13
|
Behrouzkia Z, Zohdiaghdam R, Khalkhali H, Mousavi F. Evaluation of Gold Nanoparticle Size Effect on Dose Enhancement Factor in Megavoltage Beam Radiotherapy Using MAGICA Polymer Gel Dosimeter. J Biomed Phys Eng 2019; 9:89-96. [PMID: 30881938 PMCID: PMC6409369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/07/2019] [Indexed: 10/24/2022]
Abstract
BACKGROUND Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was used to investigate the dosimetric effect of GNP size in megavoltage (MV) photon beam radiotherapy. MATERIAL AND METHODS GNPs with the size of 30nm, 50nm and 100nm in diameter were used. Transmission electron microscope (TEM) and dynamic light scattering (DLS) were applied to analyze the size of nanoparticles. The MAGICA polymer gel was synthesized and impregnated with different sizes of GNPs. The samples were irradiated with 6MV photon beam and 24 hours after irradiation, they were read using a Magnetic Resonance Imaging (MRI) scanner. Macroscopic Dose Enhancement Factor (DEF) was measured to compare the effect of GNP size. The MAGICA response of the 6MV x-ray beam was verified comparing Percentage Depth Dose (PDD) curve extracted from polymer gel dosimetry and Treatment Planning System (TPS). RESULTS MAGICA polymer gel dose response curve was linear in the range of 0 to 10 Gy. DEFs by adding 30nm, 50nm and 100nm GNPs were 1.1, 1.17 and 1.12, respectively. PDD curves of polymer gel dosimeter and treatment planning system were in good agreement. CONCLUSION The results indicated a substantial increase in DEF uses a MV photon beam in combination with GNPs of different sizes and it was inconsistent with previous radiobiological studies. The maximum DEF was achieved for 50nm GNPs in comparison with 30nm and 100nm leading to the assumption of self-absorption effect by larger diameters. According to the outcomes of this work, MAGICA polymer gel can be recommended as a reliable dosimeter to investigate the dosimetric effect of GNP size and also a useful method to validate the current radiobiological and simulation studies.
Collapse
Affiliation(s)
- Zh. Behrouzkia
- PhD of Medical Physics, Urmia University of Medical Science, School of Medicine, Urmia, Iran
| | - R. Zohdiaghdam
- PhD of Medical Physics, Urmia University of Medical Science, School of Para Medicine, Urmia, Iran
| | - H.R. Khalkhali
- PhDs of Biostatics, Patient Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - F. Mousavi
- MSc in Medical Physics, Urmia University of Medical Science, School of Medicine, Urmia, Iran
| |
Collapse
|
14
|
Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. NANOSCALE 2019; 11:799-819. [PMID: 30603750 PMCID: PMC8112886 DOI: 10.1039/c8nr07769j] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An urgent need for early detection and diagnosis of diseases continuously pushes the advancements of imaging modalities and contrast agents. Current challenges remain for fast and detailed imaging of tissue microstructures and lesion characterization that could be achieved via development of nontoxic contrast agents with longer circulation time. Nanoparticle technology offers this possibility. Here, we review nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT, addressing their structure related features, advantages and limitations. Furthermore, their applications in each imaging modality are also reviewed using commonly studied examples. Future research will investigate multifunctional nanoplatforms to address safety, efficacy and theranostic capabilities. Nanoparticles as imaging contrast agents have promise to greatly benefit clinical practice.
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001 P. R. China.
| | | | | | | |
Collapse
|
15
|
Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. JOURNAL OF RADIATION RESEARCH 2017; 58:405-411. [PMID: 28419319 PMCID: PMC5569704 DOI: 10.1093/jrr/rrx009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/06/2017] [Indexed: 05/21/2023]
Abstract
The purpose of this study was to analyse the effects of the type, concentration, and nanoparticle diameter of dose enhancement materials on the dose enhancement of low- and high-energy megavoltage (MV) X-rays acquired from a medical linear accelerator using Monte Carlo simulation. Monte Carlo simulation was performed with the Monte Carlo N-Particle Transport (MCNPX) code, using the energy spectrum of the linear accelerator and a mathematical Snyder head phantom. A 5-cm-diameter virtual tumour was defined in the centre of the phantom. Gold, gadolinium, iodine and iron oxide were used as dose enhancement materials. Varying concentrations (7, 18 and 30 mg/g) of nanoparticles of different diameters (25, 50, 75, 100 and 125 nm) were applied, and the dose enhancement was comparatively evaluated for 4, 6, 10 and 15 MV X-rays, and a 60Co source. Higher dose enhancement factors (DEFs) were observed when the incident energy was low. Moreover, the dose enhancement effects were greatest with gold nanoparticles, followed by gadolinium, iodine, and iron oxide nanoparticles; the DEFs were 1.011-1.047 (gold), 1.005-1.030 (gadolinium), 1.002-1.028 (iodine) and 1.002-1.014 (iron oxide). The dose enhancement effects increased with increasing nanoparticle diameter and concentration. However, the concentration of the material had a greater impact than the diameter of the nanoparticles. As the concentration and diameter of nanoparticles increased, the DEF also increased. The 4 and 6 MV X-rays demonstrated higher dose enhancement compared with the 10 and 15 MV X-rays.
Collapse
Affiliation(s)
- Chulhwan Hwang
- Department of Radiation Oncology, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, Republic of Korea
| | - Ja Mee Kim
- Computer Science Education, Graduate School of Education, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - JungHoon Kim
- Department of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan, Republic of Korea, 57 Oryundae-ro, Geumjeong-gu, Busan, Republic of Korea
- Corresponding author. Department of Radiological Science, College of Health Sciences, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan, Republic of Korea. Tel: +82(0)10 9142 1171;
| |
Collapse
|
16
|
Retif P, Reinhard A, Paquot H, Jouan-Hureaux V, Chateau A, Sancey L, Barberi-Heyob M, Pinel S, Bastogne T. Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles. Int J Nanomedicine 2016; 11:6169-6179. [PMID: 27920524 PMCID: PMC5125759 DOI: 10.2147/ijn.s111320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This article addresses the in silico-in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy.
Collapse
Affiliation(s)
- Paul Retif
- Unité de Physique Médicale, CHR Metz-Thionville, Ars-Laquenexy; Université de Lorraine; CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy
| | - Aurélie Reinhard
- Université de Lorraine; CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy
| | - Héna Paquot
- Université de Lorraine; CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy
| | | | - Alicia Chateau
- Université de Lorraine; CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy
| | - Lucie Sancey
- Institut Lumière Matière, UMR 5306, CNRS, Villeurbanne
| | | | - Sophie Pinel
- Université de Lorraine; CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy
| | - Thierry Bastogne
- Université de Lorraine; CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy; INRIA-BIGS & CRAN, Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
17
|
Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol 2016; 7:8. [PMID: 27867425 PMCID: PMC5095165 DOI: 10.1186/s12645-016-0021-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is currently used in around 50% of cancer treatments and relies on the deposition of energy directly into tumour tissue. Although it is generally effective, some of the deposited energy can adversely affect healthy tissue outside the tumour volume, especially in the case of photon radiation (gamma and X-rays). Improved radiotherapy outcomes can be achieved by employing ion beams due to the characteristic energy deposition curve which culminates in a localised, high radiation dose (in form of a Bragg peak). In addition to ion radiotherapy, novel sensitisers, such as nanoparticles, have shown to locally increase the damaging effect of both photon and ion radiation, when both are applied to the tumour area. Amongst the available nanoparticle systems, gold nanoparticles have become particularly popular due to several advantages: biocompatibility, well-established methods for synthesis in a wide range of sizes, and the possibility of coating of their surface with a large number of different molecules to provide partial control of, for example, surface charge or interaction with serum proteins. This gives a full range of options for design parameter combinations, in which the optimal choice is not always clear, partially due to a lack of understanding of many processes that take place upon irradiation of such complicated systems. In this review, we summarise the mechanisms of action of radiation therapy with photons and ions in the presence and absence of nanoparticles, as well as the influence of some of the core and coating design parameters of nanoparticles on their radiosensitisation capabilities.
Collapse
Affiliation(s)
- Kaspar Haume
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Soraia Rosa
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | - Sophie Grellet
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Małgorzata A. Śmiałek
- Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Karl T. Butterworth
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | | | - Kevin M. Prise
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | - Jon Golding
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Nigel J. Mason
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
18
|
Subiel A, Ashmore R, Schettino G. Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles. Theranostics 2016; 6:1651-71. [PMID: 27446499 PMCID: PMC4955064 DOI: 10.7150/thno.15019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Research on the application of high-Z nanoparticles (NPs) in cancer treatment and diagnosis has recently been the subject of growing interest, with much promise being shown with regards to a potential transition into clinical practice. In spite of numerous publications related to the development and application of nanoparticles for use with ionizing radiation, the literature is lacking coherent and systematic experimental approaches to fully evaluate the radiobiological effectiveness of NPs, validate mechanistic models and allow direct comparison of the studies undertaken by various research groups. The lack of standards and established methodology is commonly recognised as a major obstacle for the transition of innovative research ideas into clinical practice. This review provides a comprehensive overview of radiobiological techniques and quantification methods used in in vitro studies on high-Z nanoparticles and aims to provide recommendations for future standardization for NP-mediated radiation research.
Collapse
Affiliation(s)
- Anna Subiel
- ✉ Corresponding author: +44 (0)20 8943 8548; ; National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
| | | | | |
Collapse
|
19
|
Synthesis of novel galactose functionalized gold nanoparticles and its radiosensitizing mechanism. J Nanobiotechnology 2015; 13:67. [PMID: 26452535 PMCID: PMC4600275 DOI: 10.1186/s12951-015-0129-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Biocompatible gold nanoparticles (GNPs) are potentially practical and efficient agents in cancer radiotherapy applications. In this study, we demonstrated that GNPs can significantly modulate irradiation response of hepatocellular carcinoma cells in vitro and investigated the underlying mechanisms. We co-grafted galactose (GAL) targeting hepatocyte specific asialoglycoprotein receptor and Polyethylene Glycol (PEG) onto GNPs surfaces to increase GNPs targeting specificity and stability. RESULTS This novel GAL-PEG-GNPs and bare GNPs show similar appearance and cytotoxicity profiles, while more GAL-PEG-GNPs can be effectively uptaken and could enhance cancer cell killing. CONCLUSION GAL-PEG-GNPs have better radiosensitization to HepG2. The sensitization mechanism of GAL-PEG-GNPs is related to the apoptotic gene process activated by generation of a large amount of free radicals induced by GNPs.
Collapse
|
20
|
Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, Barberi-Heyob M. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters. Theranostics 2015; 5:1030-44. [PMID: 26155318 PMCID: PMC4493540 DOI: 10.7150/thno.11642] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/26/2015] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development.
Collapse
Affiliation(s)
- Paul Retif
- 1. CHR Metz-Thionville, Hôpital de Mercy, Service de radiothérapie, 1 allée du Château, Ars-Laquenexy, 57530, France
- 2. Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex, 54506, France
- 3. CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy Cedex, 54506, France
| | - Sophie Pinel
- 2. Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex, 54506, France
- 3. CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy Cedex, 54506, France
| | - Magali Toussaint
- 2. Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex, 54506, France
- 3. CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy Cedex, 54506, France
| | - Céline Frochot
- 4. Université de Lorraine, LRGP, UMR 7274, 1 rue Grandville, Nancy, 54000, France
- 5. CNRS, LRGP, UMR 7274, 1 rue Grandville, Nancy, 54000, France
| | - Rima Chouikrat
- 4. Université de Lorraine, LRGP, UMR 7274, 1 rue Grandville, Nancy, 54000, France
- 5. CNRS, LRGP, UMR 7274, 1 rue Grandville, Nancy, 54000, France
| | - Thierry Bastogne
- 2. Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex, 54506, France
- 3. CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy Cedex, 54506, France
- 6. Université de Lorraine, INRIA-BIGS & CRAN, BP 70239, Vandœuvre-lès-Nancy Cedex, 54506, France
| | - Muriel Barberi-Heyob
- 2. Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex, 54506, France
- 3. CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy Cedex, 54506, France
| |
Collapse
|
21
|
Taupin F, Flaender M, Delorme R, Brochard T, Mayol JF, Arnaud J, Perriat P, Sancey L, Lux F, Barth RF, Carrière M, Ravanat JL, Elleaume H. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol 2015; 60:4449-64. [PMID: 25988839 DOI: 10.1088/0031-9155/60/11/4449] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist(®) in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL(-1)), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44 ± 0.33 and 1.50 ± 0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66 ± 0.17 and 1.01 ± 0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly 'energy dependent' for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs.
Collapse
Affiliation(s)
- Florence Taupin
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France. Inserm, U836, F-38000 Grenoble, France. Université Grenoble Alpes, INAC-SCIB, LAN, F-38000 Grenoble, France. CEA, INAC-SCIB, F-38000 Grenoble, France. European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Babaei M, Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. BIOIMPACTS : BI 2014; 4:15-20. [PMID: 24790894 PMCID: PMC4005278 DOI: 10.5681/bi.2014.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/19/2013] [Accepted: 11/19/2013] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Application of nanoparticles as radio sensitizer is a promising field to improve efficiency of radiotherapy. METHODS This study was conducted to review nano radio sensitizers. PubMed, Ovid Medline, Science Direct, Scopus, ISI web of knowledge, and Springer databases were searched from 2000 to May 2013 to identify relevant studies. Search was restricted to English language. RESULTS We included any study that evaluated nanoparticles, volunteer of radio enhancement at radiotherapy on animals or cell lines. Nanoparticles can increase radio sensitivity of tumor cells. This effect was shown in vivo and in vitro, at kilovltage or megavoltage energies, in 24 reviewed studies. Focus of studies was on gold nanoparticles. Radio sensitizing effects of nanoparticles depend on nanoparticles' size, type, concentration, intracellular localization, used irradiation energy and tested cell line. CONCLUSION Literature suggests potency of nanoparticles for increasing cell radio sensitivity. Reviewed results are promising and warrant future clinical trials.
Collapse
Affiliation(s)
- Mohammad Babaei
- Department of Radiotherapy Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|