1
|
An JH, Hong SE, Yu SL, Kang J, Park CG, Lee HY, Lee SK, Lee DC, Park HW, Hwang WM, Yun SR, Park Y, Park MH, Yoon KR, Yoon SH. Ceria-Zirconia nanoparticles reduce intracellular globotriaosylceramide accumulation and attenuate kidney injury by enhancing the autophagy flux in cellular and animal models of Fabry disease. J Nanobiotechnology 2022; 20:125. [PMID: 35264192 PMCID: PMC8905732 DOI: 10.1186/s12951-022-01318-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background Fabry disease (FD) is a lysosome storage disease (LSD) characterized by significantly reduced intracellular autophagy function. This contributes to the progression of intracellular pathologic signaling and can lead to organ injury. Phospholipid–polyethyleneglycol-capped Ceria-Zirconia antioxidant nanoparticles (PEG-CZNPs) have been reported to enhance autophagy flux. We analyzed whether they suppress globotriaosylceramide (Gb3) accumulation by enhancing autophagy flux and thereby attenuate kidney injury in both cellular and animal models of FD. Results Gb3 was significantly increased in cultured human renal proximal tubular epithelial cells (HK-2) and human podocytes following the siRNA silencing of α galactosidase A (α-GLA). PEG-CZNPs effectively reduced the intracellular accumulation of Gb3 in both cell models of FD and improved both intracellular inflammation and apoptosis in the HK-2 cell model of FD. Moreover these particles attenuated pro fibrotic cytokines in the human podocyte model of FD. This effect was revealed through an improvement of the intracellular autophagy flux function and a reduction in reactive oxygen species (ROS). An FD animal model was generated in which 4-week-old male B6;129-Glatm1Kul/J mice were treated for 8 weeks with 10 mg/kg of PEG-CZNPs (twice weekly via intraperitoneal injection). Gb3 levels were reduced in the kidney tissues of these animals, and their podocyte characteristics and autophagy flux functions were preserved. Conclusions PEG-CZNPs alleviate FD associated kidney injury by enhancing autophagy function and thus provide a foundation for the development of new drugs to treat of storage disease. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01318-8.
Collapse
Affiliation(s)
- Jong Hun An
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Sang-Eun Hong
- Department of Chemistry, Hannam University, Daejeon, Republic of Korea
| | - Seong-Lan Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jaeku Kang
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Sung-Ki Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),, Deajeon, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Won-Min Hwang
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Sung-Ro Yun
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Yohan Park
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Moon Hyang Park
- Department of Pathology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Kuk Ro Yoon
- Department of Chemistry, Hannam University, Daejeon, Republic of Korea
| | - Se-Hee Yoon
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Cochleovestibular involvement in patients with Fabry disease: data from the multicenter cohort FFABRY. Eur Arch Otorhinolaryngol 2021; 279:1639-1644. [PMID: 34825971 DOI: 10.1007/s00405-021-07173-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE Fabry disease (FD) is a lysosomal storage disease responsible for cochleovestibular involvement. Exact prevalence and pathophysiological mechanisms behind ENT affections are still poorly known. Treating FD with enzyme replacement therapy (ERT) does not seem to significantly improve the ENT symptoms, while the impact of migalastat has yet to be determined. METHODS We carried out a retrospective multi-centre study on 47 patients from the FFABRY cohort who had an ENT consultation in the context of their FD. The information collected were as follows: clinical examination, videonystagmoscopy, pure-tone speech audiometry, videonystagmography or VHIT (Video Head Impulse Test). Severe hearing loss was defined as greater than 70 dB. RESULTS The median age of our cohort was 52 years with a non-negligible proportion of non-classic variants and female carriers. 72.3% of the patients complained of at least one of the following symptoms: hearing loss, tinnitus or vertigo. Pure-tone audiometry was abnormal in 61.7% of the patients (29/47), while speech audiometry was abnormal for 41.7% of the patients. The age of the patients and hypertrophic cardiomyopathy were significantly associated with the existence of an anomaly in pure-tone audiometry results. Severe hearing loss (> 70 dB) was significantly more common in male patients. DISCUSSION Hearing loss is particularly frequent in FD and is not limited to classic phenotypes. Close ENT follow-up is essential for Fabry patients to detect those who might benefit from hearing aid. Further studies are needed to define the impact of migalastat on cochleovestibular symptoms.
Collapse
|
3
|
Modrego A, Amaranto M, Godino A, Mendoza R, Barra JL, Corchero JL. Human α-Galactosidase A Mutants: Priceless Tools to Develop Novel Therapies for Fabry Disease. Int J Mol Sci 2021; 22:6518. [PMID: 34204583 PMCID: PMC8234732 DOI: 10.3390/ijms22126518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disease caused by mutations in the gene for the α-galactosidase A (GLA) enzyme. The absence of the enzyme or its activity results in the accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), in different tissues, leading to a wide range of clinical manifestations. More than 1000 natural variants have been described in the GLA gene, most of them affecting proper protein folding and enzymatic activity. Currently, FD is treated by enzyme replacement therapy (ERT) or pharmacological chaperone therapy (PCT). However, as both approaches show specific drawbacks, new strategies (such as new forms of ERT, organ/cell transplant, substrate reduction therapy, or gene therapy) are under extensive study. In this review, we summarize GLA mutants described so far and discuss their putative application for the development of novel drugs for the treatment of FD. Unfavorable mutants with lower activities and stabilities than wild-type enzymes could serve as tools for the development of new pharmacological chaperones. On the other hand, GLA mutants showing improved enzymatic activity have been identified and produced in vitro. Such mutants could overcome several complications associated with current ERT, as lower-dose infusions of these mutants could achieve a therapeutic effect equivalent to that of the wild-type enzyme.
Collapse
Affiliation(s)
- Andrea Modrego
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.M.); (R.M.)
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Marilla Amaranto
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina; (M.A.); (A.G.); (J.L.B.)
| | - Agustina Godino
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina; (M.A.); (A.G.); (J.L.B.)
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.M.); (R.M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/Monforte de Lemos 3–5, 28029 Madrid, Spain
| | - José Luis Barra
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina; (M.A.); (A.G.); (J.L.B.)
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.M.); (R.M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/Monforte de Lemos 3–5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|