1
|
Okanari K, Teranishi H, Umeda R, Shikano K, Inoue M, Hanada T, Ihara K, Hanada R. Behavioral and neurotransmitter changes on antiepileptic drugs treatment in the zebrafish pentylenetetrazol-induced seizure model. Behav Brain Res 2024; 464:114920. [PMID: 38403178 DOI: 10.1016/j.bbr.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Epilepsy, a recurrent neurological disorder involving abnormal neurotransmitter kinetics in the brain, has emerged as a global health concern. The mechanism of epileptic seizures is thought to involve a relative imbalance between excitatory and inhibitory neurotransmitters. Despite the recent advances in clinical and basic research on the pathogenesis of epilepsy, the complex relationship between the neurotransmitter changes and behavior with and without antiepileptic drugs (AEDs) during seizures remains unclear. To investigate the effects of AEDs such as levetiracetam (LEV), carbamazepine (CBZ), and fenfluramine (FFR) on key neurotransmitters in the pentylenetetrazol (PTZ)-induced seizures in adult zebrafish, we examined the changes in glutamic acid, gamma-aminobutyric acid (GABA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), choline, acetylcholine, norepinephrine, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and adenosine. In this study, we observed that 5-HT and DA levels in the brain increased immediately after PTZ-induced seizures. Behavioral tests clearly showed that all of these AEDs suppressed the PTZ-induced seizures. Upon treatment of PTZ-induced seizures with these AEDs, CBZ decreased the glutamic acid and FFR increased the GABA levels; however, no neurotransmitter changes were observed in the brain after LEV administration. Thus, we demonstrated a series of neurotransmitter changes linked to behavioral changes during PTZ-induced epileptic seizures when LEV, CBZ, or FFR were administered. These findings will lead to a more detailed understanding of the pathogenesis of epilepsy associated with behavioral and neurotransmitter changes under AED treatment.
Collapse
Affiliation(s)
- Kazuo Okanari
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Masanori Inoue
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan.
| |
Collapse
|
2
|
Torun IE, Kılınc YB, Kilinc E. Endogenous and exogenous serotonin, but not sumatriptan, ameliorate seizures and neuroinflammation in the pentylenetetrazole-induced seizure model in rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:48-55. [PMID: 35239805 PMCID: PMC9651504 DOI: 10.1590/0004-282x-anp-2021-0101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT Background: Epilepsy has neuropsychiatric comorbidities such as depression, bipolar disorder, and anxiety. Drugs that target epilepsy may also be useful for its neuropsychiatric comorbidities. Objective: To investigate the effects of serotonergic modulation on pro-inflammatory cytokines and the seizures in pentylenetetrazole (PTZ)-induced seizure model in rats. Methods: Male Wistar rats were injected intraperitoneally with serotonin, selective serotonin reuptake inhibitor fluoxetine, 5-HT1B/D receptor agonist sumatriptan, or saline 30 min prior to PTZ treatment. Behavioral seizures were assessed by the Racine's scale. Concentrations of IL-1β, IL-6, and TNF-α in serum and brain tissue were determined by ELISA. Results: Serotonin and fluoxetine, but not sumatriptan, alleviated PTZ-induced seizures by prolonging onset times of myoclonic-jerk and generalized tonic-clonic seizures. The anti-seizure effect of fluoxetine was greater than that of serotonin. Likewise, serotonin and fluoxetine, but not sumatriptan, reduced PTZ-induced increases in the levels of IL-1β and IL-6 in both serum and brain tissue. None of the administered drugs including PTZ affected TNF-α concentrations. Conclusions: Our findings suggest that endogenous and exogenous serotonin exhibits anticonvulsant effects by suppressing the neuroinflammation. It seems that 5-HT1B/D receptors do not mediate anticonvulsant and anti-neuroinflammatory effects of serotonin.
Collapse
|
3
|
Kilinc E, Torun IE, Cetinkaya A, Tore F. Mast cell activation ameliorates pentylenetetrazole-induced seizures in rats: The potential role for serotonin. Eur J Neurosci 2021; 55:2912-2924. [PMID: 33565644 DOI: 10.1111/ejn.15145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays a key role in the pathogenesis of epilepsy, but the underlying mechanisms are not well understood. Mast cells are multifunctional immune cells that are also activated by stress. The effects of activated mast cells on epileptogenesis are not yet known. This study investigated the effects and mechanisms of compound 48/80-stimulated mast cell activation on pentylenetetrazole-induced epileptic seizures in rats. Male Wistar rats were separated into seven groups (n = 12). Group-1(NS+PTZ) received intraperitoneal saline solution, while groups 2(C-48/80+PTZ-1), 3(C-48/80+PTZ-2), and 4(C-48/80+PTZ-3) received compound-48/80 at doses of 0.5, 1, and 2 mg/kg, respectively, 30 min before 45 mg/kg pentylenetetrazole administration. Similarly, Group-5(Cr+C-48/80+PTZ) received 10 mg/kg cromolyn plus 2 mg/kg compound-48/80 before pentylenetetrazole, and Group-6(MC Dep+C-48/80+PTZ) was exposed to a mast cell-depletion process, and then received 2 mg/kg compound-48/80. Group-7(5-HT+PTZ) received 10 mg/kg serotonin. Seizure stages were evaluated using Racine's scale. Compound-48/80 at 2 mg/kg induced anticonvulsive effects against pentylenetetrazole-induced seizures by extending onset-times of both myoclonic-jerk and generalized tonic-clonic seizures (p = 0.0001), and by shortening the duration of generalized tonic-clonic seizure (p = 0.008). These effects were reversed by cromolyn (p = 0.0001). These effects were not observed in mast cell-depleted rats. Similarly to compound 48/80, serotonin also exhibited anticonvulsive effects against seizures (p < 0.05). Compound 48/80 acts as an anticonvulsant by activating mast cells in a dose-dependent manner. The anticonvulsive effects of mast cell activation may be mediated by serotonin. Mast cell activation may therefore provide protective activity against seizures under appropriate circumstances.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | | | - Ayhan Cetinkaya
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Fatma Tore
- Department of Physiology, Istanbul Health and Technology University, Istanbul, Turkey
| |
Collapse
|
4
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the in-junction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the acti-vation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of ster-oid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on sero-tonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk be-tween estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogen-esis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Javaid Ashraf Nowshehri
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Dhafer Mahdi Alshayban
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
5
|
Lin WH, Li XF, Lin MX, Zhou Y, Huang HP. Novel insights into the effect of paroxetine administration in pilocarpine‑induced chronic epileptic rats. Mol Med Rep 2017; 16:8245-8252. [PMID: 28983622 DOI: 10.3892/mmr.2017.7659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of paroxetine intervention in epilepsy, and its association with the expression of serotonin transporter (SERT) and hippocampal apoptosis. Thirty adult male Sprague Dawley rats were divided into control vehicle (n=6) and epileptic (n=24) groups. Status epilepticus (SE) was induced via systemic injection of pilocarpine, and seizure activity was monitored via video electroencephalogram. The epileptic group was then randomly divided into two groups; Four weeks following SE induction, paroxetine (5 mg/kg/day; SE + paroxetine group) or normal saline (SE group) was intraperitoneally injected for 4 weeks. Brain tissue was collected to evaluate apoptosis via terminal deoxynucleotidyl transferase dUTP nick‑end labeling. SERT, B‑cell lymphoma‑2 (Bcl‑2) and brain derived neurotropic factor (BDNF) expression levels were evaluated by western blotting, and miR‑16 expression was evaluated by reverse transcription‑quantitative polymerase chain reaction. Paroxetine did not affect the mortality of the pilocarpine‑induced chronic epileptic rats. Spontaneous recurrent seizures (SSRs) were observed 7‑28 days following SE induction. The frequency and stage of the SSRs were reduced by paroxetine administration. Apoptotic cells were observed in the epileptic hippocampus. Following paroxetine intervention, the staining intensity and number of apoptotic cells were significantly decreased. Expression levels of BDNF and Bcl‑2 were lower in the SE group compared with the vehicle group. The former was not altered by paroxetine injection; however, the latter was increased. In the SE group, SERT expression was not altered in the raphe nucleus but was decreased in the hippocampus. Following paroxetine administration, SERT expression was decreased in the raphe nucleus and increased in the hippocampus. In the SE group, miR‑16 expression was decreased in the raphe nucleus and increased in the hippocampus. Following paroxetine administration, miR‑16 expression was not altered in the raphe nucleus but was reduced in the hippocampus. In conclusion, the seizures and hippocampal apoptosis observed in chronic epileptic rats were alleviated by paroxetine treatment. This effect may be associated with the reduced Bcl‑2 and BDNF expression and the modulation of SERT expression. The alterations in miR‑16 expression may provide a potential explanation for the modulation of apoptosis; however, further research is required to determine the complete underlying molecular mechanism.
Collapse
Affiliation(s)
- Wan-Hui Lin
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Feng Li
- Department of Neurology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ming-Xing Lin
- Department of Pediatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ying Zhou
- Neuroscience Research Center of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hua-Pin Huang
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|