1
|
Nasseri M, Pal Attia T, Joseph B, Gregg NM, Nurse ES, Viana PF, Schulze-Bonhage A, Dümpelmann M, Worrell G, Freestone DR, Richardson MP, Brinkmann BH. Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning. J Neural Eng 2021; 18. [PMID: 33730713 DOI: 10.1088/1741-2552/abef8a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/17/2021] [Indexed: 11/12/2022]
Abstract
Objective. The detection of seizures using wearable devices would improve epilepsy management, but reliable detection of seizures in an ambulatory environment remains challenging, and current studies lack concurrent validation of seizures using electroencephalography (EEG) data.Approach. An adaptively trained long-short-term memory deep neural network was developed and trained using a modest number of seizure data sets from wrist-worn devices. Transfer learning was used to adapt a classifier that was initially trained on intracranial electroencephalography (iEEG) signals to facilitate classification of non-EEG physiological datasets comprising accelerometry, blood volume pulse, skin electrodermal activity, heart rate, and temperature signals. The algorithm's performance was assessed with and without pre-training on iEEG signals and transfer learning. To assess the performance of the seizure detection classifier using long-term ambulatory data, wearable devices were used for multiple months with an implanted neurostimulator capable of recording iEEG signals, which provided independent electrographic seizure detections that were reviewed by a board-certified epileptologist.Main results. For 19 motor seizures from 10 in-hospital patients, the algorithm yielded a mean area under curve (AUC), a sensitivity, and an false alarm rate per day (FAR/day) of 0.98, 0.93, and 2.3, respectively. Additionally, for eight seizures with probable motor semiology from two ambulatory patients, the classifier achieved a mean AUC of 0.97 and an FAR of 2.45 events/day at a sensitivity of 0.9. For all seizure types in the ambulatory setting, the classifier had a mean AUC of 0.82 with a sensitivity of 0.47 and an FAR of 7.2 events/day.Significance. The performance of the algorithm was evaluated using motor and non-motor seizures during in-hospital and ambulatory use. The classifier was able to detect multiple types of motor and non-motor seizures, but performed significantly better on motor seizures.
Collapse
Affiliation(s)
- Mona Nasseri
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America.,School of Engineering, University of North Florida, Jacksonville, FL, United States of America
| | - Tal Pal Attia
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Boney Joseph
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Nicholas M Gregg
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Ewan S Nurse
- Seer Medical Pty Ltd, Melbourne, VIC, Australia.,Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC, Australia
| | - Pedro F Viana
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Andreas Schulze-Bonhage
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gregory Worrell
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Dean R Freestone
- Seer Medical Pty Ltd, Melbourne, VIC, Australia.,Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC, Australia
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Benjamin H Brinkmann
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Alfred 9-441C, 200 First Street SW, Rochester, MN 55905, United States of America
| |
Collapse
|
2
|
Kurada AV, Srinivasan T, Hammond S, Ulate-Campos A, Bidwell J. Seizure detection devices for use in antiseizure medication clinical trials: A systematic review. Seizure 2019; 66:61-69. [PMID: 30802844 DOI: 10.1016/j.seizure.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE This study characterizes the current capabilities of seizure detection device (SDD) technology and evaluates the fitness of these devices for use in anti-seizure medication (ASM) clinical trials. METHODS Through a systematic literature review, 36 wireless SDDs featured in published device validation studies were identified. Each device's seizure detection capabilities that addressed ASM clinical trial primary endpoint measurement needs were cataloged. RESULTS The two most common types of seizures targeted by ASMs in clinical trials are generalized tonic-clonic (GTC) seizures and focal with impaired awareness (FIA) seizures. The Brain Sentinel SPEAC achieved the highest performance for the detection of GTC seizures (F1-score = 0.95). A non-commercial wireless EEG device achieved the highest performance for the detection of FIA seizures (F1-score = 0.88). DISCUSSION A preliminary assessment of device capabilities for measuring selected ASM clinical trial secondary endpoints was performed. The need to address key limitations in validation studies is highlighted in order to support future assessments of SDD fitness for ASM clinical trial use. In tandem, a stepwise framework to streamline device testing is put forth. These suggestions provide a starting point for establishing SDD reporting requirements before device integration into ASM clinical trials.
Collapse
Affiliation(s)
- Abhinav V Kurada
- Department of Biomedical Engineering, Columbia University School of Engineering and Applied Science, New York, NY, USA.
| | - Tarun Srinivasan
- Department of Biochemistry, Columbia University, New York, NY, USA
| | - Sarah Hammond
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Ulate-Campos
- Department of Neurology, National Children's Hospital "Dr. Carlos Saenz Herrera", San José, Costa Rica
| | - Jonathan Bidwell
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; School of Interactive Computing, Georgia Institute of Technology, 85 Fifth Street NW, Atlanta, GA, USA
| |
Collapse
|