1
|
Bargowo L, Kusumawardhani B, Perdana S, Wijaksana IKE, Saskianti T, Ridwan RD, Setijanto D, Prahasanti C, Saquib Abullais S. Expression of osteopontin and osteocalcin in Osteoblast cells exposed to a combination of polymethylmethacrylate (PMMA) and hydroxyapatite (HAp): A prospective observational study. Medicine (Baltimore) 2024; 103:e40088. [PMID: 39432596 PMCID: PMC11495729 DOI: 10.1097/md.0000000000040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
The success of implant placement will depend on the ability of the implant material to integrate with the surrounding tissue. Polymethylmethacrylate (PMMA) has been used as an implant material, but it has several fallback properties in its interaction with bone tissue. The addition of hydroxyapatite (HAp) to PMMA is expected to produce reinforced bioceramic polymers with better mechanical and biological properties. The purpose of this study was to evaluate the expression of osteopontin and osteocalcin in cultured osteoblasts when exposed to two implant candidate materials: PMMA-HApGMP, derived from bovine bone and processed under Good Manufacturing Practice by a Tissue Bank, and PMMA-HApBBK, sourced from limestone (CaCO3) and processed by Balai Besar Keramik. Twenty-four fetal rat calvariae osteoblast cell cultures were randomly divided into 6 groups: 7- and 14-day control group, 7 and 14 days PMMA-HApGMP group, 7 and 14 days PMMA-HApBBK group. The expression of osteopontin and osteocalcin was seen by immunocytochemical examination. The results showed that the average expression of osteopontin and osteocalcin in the treatment group on the 7th and 14th days was higher than the control group. The expression of osteopontin and osteocalcin in the PMMA-HApGMP group increased significantly (P < .05) on day 14. The PMMA-HAp combination material can accelerate the process of osteoblast differentiation which is characterized by an increase in osteopontin and osteocalcin which are markers of bone formation. This will support in increasing osseointegration.
Collapse
Affiliation(s)
- Lambang Bargowo
- Doctoral Programs, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
- Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Banun Kusumawardhani
- Department of Biomedical Sciences, Faculty of Dentistry, Jember University, Jember, Indonesia
| | - Sonny Perdana
- Periodontic Residency Program’s Student, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - I Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Darmawan Setijanto
- Department of Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Chiquita Prahasanti
- Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Bakina O, Svarovskaya N, Ivanova L, Glazkova E, Rodkevich N, Evstigneev V, Evstigneev M, Mosunov A, Lerner M. New PMMA-Based Hydroxyapatite/ZnFe 2O 4/ZnO Composite with Antibacterial Performance and Low Toxicity. Biomimetics (Basel) 2023; 8:488. [PMID: 37887619 PMCID: PMC10604293 DOI: 10.3390/biomimetics8060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Polymethylmethacrylate (PMMA) is the most commonly used bone void filler in orthopedic surgery. However, the biocompatibility and radiopacity of PMMA are insufficient for such applications. In addition to insufficient biocompatibility, the microbial infection of medical implants is one of the frequent causes of failure in bone reconstruction. In the present work, the preparation of a novel PMMA-based hydroxyapatite/ZnFe2O4/ZnO composite with heterophase ZnFe2O4/ZnO NPs as an antimicrobial agent was described. ZnFe2O4/ZnO nanoparticles were produced using the electrical explosion of zinc and iron twisted wires in an oxygen-containing atmosphere. This simple, highly productive, and inexpensive nanoparticle fabrication approach could be readily adapted to different applications. From the findings, the presented composite material showed significant antibacterial activity (more than 99% reduction) against P. aeruginosa, S. aureus, and MRSA, and 100% antifungal activity against C. albicans, as a result of the combined use of both ZnO and ZnFe2O4. The composite showed excellent biocompatibility against the sensitive fibroblast cell line 3T3. The more-than-70% cell viability was observed after 1-3 days incubation of the sample. The developed composite material could be a potential material for the fabrication of 3D-printed implants.
Collapse
Affiliation(s)
- Olga Bakina
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Natalia Svarovskaya
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Ludmila Ivanova
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Elena Glazkova
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Nikolay Rodkevich
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Vladyslav Evstigneev
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Maxim Evstigneev
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Andrey Mosunov
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Marat Lerner
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| |
Collapse
|
3
|
Raszewski Z, Kulbacka J, Pakuła D, Brząkalski D, Przekop RE. Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103674. [PMID: 37241300 DOI: 10.3390/ma16103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
This study was aimed at investigating poly(methyl methacrylate) (PMMA), modified with a silanized feldspar filler at 10 wt.% and 30 wt.%, as a dental material system for the production of prosthetic teeth. Samples of this composite were subjected to a compressive strength test, three-layer methacrylic teeth were fabricated with the said materials, and their connection to a denture plate was examined. The biocompatibility of the materials was assessed via cytotoxicity tests on human gingival fibroblasts (HGFs) and Chinese hamster ovarian cells (CHO-K1). The addition of feldspar significantly improved the material's compressive strength, with neat PMMA reaching 107 MPa, and the addition of 30% feldspar raising it up to 159 MPa. As observed, composite teeth (cervical part made of neat PMMA, dentin with 10 wt.%, and enamel with 30 wt.% of feldspar) had good adhesion to the denture plate. Neither of the tested materials revealed any cytotoxic effects. In the case of hamster fibroblasts, increased cell viability was observed, with only morphological changes being noticed. Samples containing 10% or 30% of inorganic filler were determined to be safe for treated cells. The use of silanized feldspar to fabricate composite teeth increased their hardness, which is of significant clinical importance for the duration of use of non-retained dentures.
Collapse
Affiliation(s)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08410 Vilnius, Lithuania
| | - Daria Pakuła
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Dariusz Brząkalski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Robert E Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| |
Collapse
|
4
|
Darjanki CM, Prahasanti C, Fitria A E, Kusumawardani B, Wijaksana IKE, Aljunaid M. RUNX2 and ALP expression in osteoblast cells exposed by PMMA-HAp combination: An in vitro study. J Oral Biol Craniofac Res 2023; 13:277-282. [PMID: 36896352 PMCID: PMC9988561 DOI: 10.1016/j.jobcr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Objective To observe the expression of Runt-Related Transcription Factors 2 (RUNX2) and Alkaline Phosphatase (ALP) markers in osteoblast cell cultures exposed to Polymethylmethacrylate (PMMA) combined with hydroxyapatite (HAp) material to improve osteointegration of bone implants. Methods Sample of PMMA and HAp materials with a mixture of PMMA with HAp made from limestone as natural source which processed through Balai Besar Keramik (HApBBK) in the first group and a mixture of PMMA with HAp made from bovine bone which processed through Good Manufacturing Practice (HApGMP) in the second group. Twenty-four fetal rat calvarie osteoblast cell cultures were randomly divided into 6 groups: 7- and 14-day control group, 7 and 14 days PMMA-HApGMP group, 7 and 14 days PMMA-HApBBK group. The expression of RUNX2 and ALP was seen by immunocytochemical examination. Result The one-way ANOVA with a significance value of 0.000 (p < 0.05). There was an increase in RUNX2 and ALP expressions on both PMMA-HApBBK and PMMA-HApGMP groups on days 7 and 14 in osteoblast cell cultures. Conclusion The PMMA-HApBBK and PMMA-HApGMP showed an increase in the RUNX2 and ALP expression in osteoblast cell cultures which indicates a potential increase of osseointegration of bone implants.
Collapse
Affiliation(s)
- Claudia Michelle Darjanki
- Residence in Periodontic Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Chiquita Prahasanti
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Eka Fitria A
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Banun Kusumawardani
- Department of Biomedical Sciences, Faculty of Dentistry, University of Jember, Surabaya, Indonesia
| | - I Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mohammed Aljunaid
- Doctoral Program of Dental Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dental and Oral Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen
| |
Collapse
|
5
|
Darjanki CM, Hananta JS, Prahasanti C, Ulfah N, Kusumawardani B, Wijaksana IKE, Aljunaid M, Nkuba A. Expression of VEGF and BMP-2 in Osteoblast cells exposed to a combination of polymethylmethacrylate (PMMA) and hydroxyapatite (HAp). J Oral Biol Craniofac Res 2023; 13:243-248. [PMID: 36818023 PMCID: PMC9930150 DOI: 10.1016/j.jobcr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Objectives Polymethylmethacrylate (PMMA) has been widely used, but it has several fallback properties in its interaction with bone tissue, so the addition of hydroxyapatite (HAp) material aims to improve the biocompatibility, regeneration process, and osteointegration of bone implants. The HAp material can be sourced from bovine bone and processed through Good Manufacturing Practice from Tissue Bank (HApGMP), and from limestone (CaCO3) processed by Balai Besar Keramik (HApBBK).This study was to observe the expression of vascular endothelial growth factor (VEGF) and Bone morphogenetic protein-2 (BMP2) in cultured osteoblasts exposed to PMMA-HApGMP and PMMA-HApBBK as implant candidate materials. Methods Sample of PMMA and HAp materials with a mixture of PMMA and HApBBK in the first group and a mixture of PMMA and HApGMP in the second group. Twenty-four fetal rat calvarie osteoblast cell cultures were randomly divided into 6 groups: 7- and 14-day control group, 7 and 14 days PMMA-HApGMP group, 7 and 14 days PMMA-HApBBK group. The expression of VEGF and BMP-2 was seen by immunocytochemical examination. Results The one-way ANOVA with a significance value of 0.000 (p < 0.05). BMP-2 and VEGF expression was increased in the 7- and 14-days groups after exposure to PMMA-HApGMP and PMMA-HApBBK. Conclusion The application of PMMA-HApGMP and PMMA-HApBBK showed an increase in the expression of VEGF and BMP-2 in osteoblast cell cultures which indicates a potential increase in the accelerated angiogenesis and osteogenesis in the bone regeneration process of bone implants.
Collapse
Affiliation(s)
| | | | - Chiquita Prahasanti
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Noer Ulfah
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Banun Kusumawardani
- Department of Biomedical Sciences, Faculty of Dentistry, University of Jember, Surabaya, Indonesia
| | - I Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mohammed Aljunaid
- Doctoral Program of Dental Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dental and Oral Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen
| | - Anord Nkuba
- Aqua Farms Organization. Sinza, Dar Es Salaam, Tanzania
- European Marine Biological Resource, Ghent University, Belgium
| |
Collapse
|
6
|
Chiang CC, Hsieh MK, Wang CY, Tuan WH, Lai PL. Cytotoxicity and cell response of preosteoblast in calcium sulfate-augmented PMMA bone cement. Biomed Mater 2021; 16. [PMID: 34410226 DOI: 10.1088/1748-605x/ac1ab5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
Poly(methyl methacrylate) (PMMA) has been widely used in orthopedic applications, but bone ingrowth and toxic monomer release are drawback of this material. Particle reinforcement with osteoconductive substitute, such as calcium sulfate (CaSO4), is one of the solutions used to modify PMMA bone cement. The current study investigated the mechanical, chemical and biological properties of CaSO4-augmented bone cement. Mechanical strength was measured by a material testing machine. The concentration of methyl methacrylate (MMA) monomer from the various formulations of PMMA mixed with CaSO4was measured by ultra-performance liquid chromatography (UPLC). CCK-8 assay and ALP assay were performed to evaluate cytotoxicity of released MMA monomer and cell differentiation. The attachment of cells to CaSO4-augmented bone cement discs was observed by confocal and scanning electron microscopy, and surface topography was also evaluated by atomic force microscopy. The results revealed that increased CaSO4weight ratios led to compromised mechanical strength and increased MMA monomer release. Cell density and cell differentiation on CaSO4-augmented bone cement discs were decreased at CaSO4weight ratios above 10%. In addition, the presence of micropores on the surface and surface roughness were both increased for PMMA composite discs containing higher levels of CaSO4. These results demonstrated that fewer MC3T3-E1 cells on the surface of CaSO4-PMMA composites was correlated to increased MMA monomer release, micropore number and surface roughness. In summary, the augmentation of a higher proportion of CaSO4(>10 wt. %) to PMMA did not promote the biological properties of traditional PMMA bone cement.
Collapse
Affiliation(s)
- Ching-Chien Chiang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Kai Hsieh
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Yun Wang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Hsing Tuan
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
7
|
Kong J, Ma J, Wu Z, Wang H, Peng X, Wang S, Wu C, Song Z, Zhao C, Cui F, Qiu Z. Minimally invasive injectable lumbar interbody fusion with mineralized collagen-modified PMMA bone cement: A new animal model. J Appl Biomater Funct Mater 2021; 18:2280800020903630. [PMID: 32421424 DOI: 10.1177/2280800020903630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was to develop a feasible and safe animal model for minimally invasive injectable lumbar interbody fusion using a novel biomaterial, mineralized collagen-polymethylmethacrylate bone cement (MC-PMMA), with unilateral pedicle screw fixation in an in vivo goat model. Eight goats (Capra aegagrus hircus) were divided into three groups: MC-PMMA, unmodified commercial-polymethylmethacrylate bone cement (UC-PMMA), and a control group (titanium cage filled with autogenous bone, TC-AB). Each group of goats was treated with minimally invasive lumbar interbody fusion at the L3/L4 and L5/L6 disc spaces (injected for MC-PMMA and UC-PMMA, implanted for TC-AB). The pedicle screws were inserted at the L3, L4, L5, and L6 vertebrae, respectively, and fixed on the left side. The characteristics of osteogenesis and bone growth were assessed at the third and the sixth month, respectively. The methods of evaluation included the survival of each animal, X-ray imaging, and 256-layer spiral computed tomography (256-CT) scanning, imaged with three-dimensional microfocus computed tomography (micro-CT), and histological analysis. The results showed that PMMA bone cement can be extruded smoothly after doping MC, the MC-PMMA integrates better with bone than the UC-PMMA, and all goats recovered after surgery without nerve damage. After 3 and 6 months, the implants were stable. New trabecular bone was observed in the TC-AB group. In the UC-PMMA group a thick fibrous capsule had formed around the implants. The MC-PMMA was observed to have perfect osteogenesis and bone ingrowth to adjacent bone surface. Minimally invasive injectable lumbar interbody fusion using MC-PMMA bone cement was shown to have profound clinical value, and the MC-PMMA showed potential application prospects.
Collapse
Affiliation(s)
- Jianjun Kong
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Jianqing Ma
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Zhanyong Wu
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Huiwang Wang
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Xiangping Peng
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Shaofeng Wang
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Chunfu Wu
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China
| | - Zhanfeng Song
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China.,Department of Orthopedic Laboratory, Xingtai Institute of Orthopedics, Hebei, P. R. China
| | - Chaohui Zhao
- Department of Orthopedics, Orthopedic Hospital of Xingtai, Hebei, P. R. China
| | - Fuzhai Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China.,Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, P. R. China
| | - Zhiye Qiu
- School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China.,Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, P. R. China
| |
Collapse
|