1
|
Li S, Cao X, Zou T, Wang Z, Chen X, Chen J, You J. Integrated transcriptomics and untargeted metabolomics reveal bone development and metabolism of newly weaned mice in response to dietary calcium and boron levels. Food Funct 2024; 15:10853-10869. [PMID: 39405052 DOI: 10.1039/d4fo03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epidemiological and animal studies have indicated that calcium and boron are essential for bone development and metabolism. However, limited information is available regarding the effects of boron supplementation on bone development and metabolism in newly weaned infants with either calcium deficiency or calcium sufficiency. This study assessed the effects of dietary boron supplementation (0 and 3 mg kg-1) on bone development and metabolism, in a newly weaned mouse model, under both calcium deficiency and sufficiency feeding conditions. The results show that mice fed a calcium sufficient diet exhibited lower fat percentage and final body weight than those fed a calcium deficient diet. Boron supplementation reduced the serum high-density lipoprotein cholesterol level and up-regulated the mRNA levels of FABP3, PPAR-γ, and CaMK in the intestinal mucosa. Importantly, boron supplementation increased the tibial weight in mice on a calcium-sufficient diet and enhanced the tibial volume in those on a calcium-deficient diet. Metabolomic analysis highlighted calcium and boron's impact on metabolites like carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, benzene and substituted derivatives, organonitrogen compounds, organooxygen compounds, and phenols, and were related to lipid metabolism and the neural signaling pathway. Transcriptomic analysis corroborated the role of calcium and boron in modulating bone metabolism via the JAK-STAT, calcium signaling, lipid metabolism, and inflammatory pathways. Multi-omics analysis indicated a strong correlation between calcium signaling pathways, lipid metabolism signaling, and dietary calcium and boron contents. This research provides insights into these complex mechanisms, potentially paving the way for novel interventions against calcium and boron deficiencies and bone metabolism abnormalities in clinical settings.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xuehai Cao
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Tiande Zou
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zirui Wang
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xingping Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jun Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jinming You
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Uysal S, Yoruk MA. Boric Acid in Milk Replacer as a Health Enhancer and Growth Promoter for Lambs in the Suckling Period. Biol Trace Elem Res 2024:10.1007/s12011-024-04214-4. [PMID: 38758480 DOI: 10.1007/s12011-024-04214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
This study was performed to investigate the effects of boric acid supplementation in milk replacer of lambs in the suckling period on performance, biochemical parameters, the antioxidant system, fecal culture, and expression of some genes. During the suckling period, 60 lambs (4 days old) were randomly given four levels of boric acid (0, 30, 60, and 90 mg/kg body weight) via milk replacer for 57 days. The lambs supplemented with boric acid had a higher weight gain and better feed conversion ratio. Boric acid supplementation quadratically increased serum triglyceride, total protein, alkaline phosphatase, serum antioxidant activity and oxidative stress biomarkers, and fecal flora and decreased IL1β, IL10, iNOS, NF-kB, and TNF-α gene expressions. The effect of boric acid on rumen papilla development could not be determined since the animals were not slaughtered. In conclusion, the use of boric acid to lambs in the suckling period improved the average weekly body weight gain and feed conversion efficiency, positively affected some biochemical parameters, antioxidant system, and intestinal flora, and also affected gene expressions related to the immune system. Boric acid supplementation had a beneficial effect on the health and growth of suckling lambs.
Collapse
Affiliation(s)
- Soner Uysal
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey.
| | - Mehmet Akif Yoruk
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55139, Turkey
| |
Collapse
|
3
|
Zhao C, Chen S, Han Y, Zhang F, Ren M, Hu Q, Ye P, Li X, Jin E, Li S. Proteomic Analysis of Rat Duodenum Reveals the Modulatory Effect of Boron Supplementation on Immune Activity. Genes (Basel) 2023; 14:1560. [PMID: 37628612 PMCID: PMC10454175 DOI: 10.3390/genes14081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The proper supplementation of boron, an essential trace element, can enhance animal immune function. We utilized the method of TMT peptide labeling in conjunction with LC-MS/MS quantitative proteomics for the purpose of examining the effects of boric acid on a rat model and analyzing proteins from the duodenum. In total, 5594 proteins were obtained from the 0, 10, and 320 mg/L boron treatment groups. Two hundred eighty-four proteins that exhibit differential expression were detected. Among the comparison, groups of 0 vs. 10 mg/L, 0 vs. 320 mg/L, and 10 vs. 320 mg/L of boron, 110, 32, and 179 proteins, respectively, demonstrated differential expression. The results revealed that these differential expression proteins (DEPs) mainly clustered into two profiles. GO annotations suggested that most of the DEPs played a role in the immune system process, in which 2'-5'-oligoadenylate synthetase-like, myxovirus resistance 1, myxovirus resistance 2, dynein cytoplasmic 1 intermediate chain 1, and coiled-coil domain containing 88B showed differential expression. The DEPs had demonstrated an augmentation in the signaling pathways, which primarily include phagosome, antigen processing, and presentation, as well as cell adhesion molecules (CAMs). Our study found that immune responses in the duodenum were enhanced by lower doses of boron and that this effect is likely mediated by changes in protein expression patterns in related signaling pathways. It offers an in-depth understanding of the underlying molecular mechanisms that lead to immune modulation in rats subjected to dietary boron treatment.
Collapse
Affiliation(s)
- Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Shuqin Chen
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Yujiao Han
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| |
Collapse
|
4
|
Şahin E, Orhan C, Erten F, Şahin F, Şahin N, Şahin K. The effect of different boron compounds on nutrient digestibility, intestinal nutrient transporters, and liver lipid metabolism. Turk J Med Sci 2023; 53:619-629. [PMID: 37476906 PMCID: PMC10387887 DOI: 10.55730/1300-0144.5624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/15/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Gastrointestinal health is essential for maintaining a healthy lifestyle. Improving nutrient absorption and energy metabolism are the critical targets for intestinal health. This study aimed to determine the effects of different boron (B) derivatives on nutrient digestibility, intestinal nutrient transporters, and lipid metabolism in rats. METHODS Twenty-one rats were allocated to three groups (n = 7) as follows: (i) Control, (ii) Sodium pentaborate pentahydrate (SPP), and (iii) boric acid (BA). The rats were fed a chow diet (AIN-93M) and supplemented with 8 mg/kg elemental B from SPP (45.2 mg/kg BW) and BA (42.7 mg/kg BW) via oral gavage every other day for 12 weeks. The nutrient digestibility of rats in each group was measured using the indigestible indicator (chromium oxide, Cr2 O3, 0.20%). At the end of the experiment, animals were decapitated by cervical dislocation and jejunum, and liver samples were taken from each animal. The nutrient transporters and lipid-regulated transcription factors were determined by RT-PCR. RESULTS The nutrient digestibility (except for ash) was increased by SPP and BA supplementation (p < 0.05). SPP and BA-supplemented rats had higher jejunal glucose transporter 1 (GLUT1), GLUT2, GLUT5, sodium-dependent glucose transporter 1 (SGLT1), fatty acid transport protein-1 (FATP1), and FATP4 mRNA expression levels compared to nonsupplemented rats (p < 0.0001). BA-supplemented rats had remarkably higher peroxisome proliferator-activated receptor gamma (PPARγ) levels than nonsupplemented rats (p < 0.0001). In contrast, sterol regulatory element-binding protein 1c (SREBP-1c), liver X receptor alpha (LxR-α), and fatty acid synthase (FAS) levels decreased by SPP supplementation compared to other groups (p < 0.05). DISCUSSION SPP and BA administration enhanced nutrient digestibility, intestinal nutrient transporters, and liver lipid metabolism in rats.
Collapse
Affiliation(s)
- Emre Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Füsun Erten
- Department of Veterinary Science, Pertek Sakine Genç Vocational School, Munzur University, Tunceli, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbul, Turkey
| | - Nurhan Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Kazim Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
5
|
Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals (Basel) 2022; 12:ani12202877. [DOI: 10.3390/ani12202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.
Collapse
|
6
|
Biţă A, Scorei IR, Bălşeanu TA, Ciocîlteu MV, Bejenaru C, Radu A, Bejenaru LE, Rău G, Mogoşanu GD, Neamţu J, Benner SA. New Insights into Boron Essentiality in Humans and Animals. Int J Mol Sci 2022; 23:ijms23169147. [PMID: 36012416 PMCID: PMC9409115 DOI: 10.3390/ijms23169147] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
Boron (B) is considered a prebiotic chemical element with a role in both the origin and evolution of life, as well as an essential micronutrient for some bacteria, plants, fungi, and algae. B has beneficial effects on the biological functions of humans and animals, such as reproduction, growth, calcium metabolism, bone formation, energy metabolism, immunity, and brain function. Naturally organic B (NOB) species may become promising novel prebiotic candidates. NOB-containing compounds have been shown to be essential for the symbiosis between organisms from different kingdoms. New insights into the key role of NOB species in the symbiosis between human/animal hosts and their microbiota will influence the use of natural B-based colon-targeting nutraceuticals. The mechanism of action (MoA) of NOB species is related to the B signaling molecule (autoinducer-2-borate (AI-2B)) as well as the fortification of the colonic mucus gel layer with NOB species from B-rich prebiotic diets. Both the microbiota and the colonic mucus gel layer can become NOB targets. This paper reviews the evidence supporting the essentiality of the NOB species in the symbiosis between the microbiota and the human/animal hosts, with the stated aim of highlighting the MoA and targets of these species.
Collapse
Affiliation(s)
- Andrei Biţă
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
- Correspondence: ; Tel.: +40-351-407-543
| | - Tudor Adrian Bălşeanu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Gabriela Rău
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Johny Neamţu
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Avenue, Room N112, Alachua, FL 32615, USA
| |
Collapse
|