1
|
Batsukh T, Tsend-Ayush A. Herbal drug‑based nanotherapy for hepatocellular carcinoma: Quercetin‑contained nanocarrier as a multipurpose therapeutic agent against hepatocellular carcinoma (Review). Biomed Rep 2025; 22:29. [PMID: 39720296 PMCID: PMC11668132 DOI: 10.3892/br.2024.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, with hepatocellular carcinoma (HCC) accounting for ~75% of all primary liver cancers and exhibiting a high incidence rate. Unfortunately, the response rate to chemotherapeutic agents for liver cancer is relatively low, primarily due to the development of drug resistance and the lack of targeted therapeutic agents. The present study focused on the anticancer mechanisms of quercetin and the development of innovative nanocarriers designed to enhance its efficacy against HCC while mitigating drug resistance. Quercetin demonstrates a diverse array of biological activities, making it a promising candidate for therapeutic applications. Its mechanisms include inhibition of tumor cell cycle, induction of apoptosis, modulation of reactive oxygen species and inhibition of chemotherapeutic resistance. Given these properties, extensive research has been conducted in pharmaceutical engineering to develop well-designed nanocarriers that incorporate quercetin. These nanocarriers aim to improve the bioavailability and targeting of quercetin, thereby enhancing its therapeutic efficacy against HCC and overcoming the challenges associated with anticancer drug resistance. Through this approach, quercetin could potentially play a pivotal role in the future of HCC treatment, providing a synergistic effect when combined with traditional chemotherapy leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tserendolgor Batsukh
- Department of Pharmacy Administration and Technology, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar 18130, Mongolia
| | - Altansukh Tsend-Ayush
- Department of Molecular Biology and Genetics, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| |
Collapse
|
2
|
El-Kazaz SE, Hafez MH, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM, El-Sayed YS. The influence of Quercetin on behavior, performance and splenic immunity in broiler chickens. Vet Anim Sci 2024; 26:100398. [PMID: 39350974 PMCID: PMC11439830 DOI: 10.1016/j.vas.2024.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Quercetin (QRT), a potent flavonoid, holds immense mechanistic potential in enhancing various aspects of broiler chicken physiological status. This comprehensive study explores the profound еffеcts of QRT on behavior, productive performance, and immune functions, unraveling the underlying mechanisms behind its efficacy. Four hundred, one-day-old Cobb 500 chicks were placed randomly into 4 supplementation groups (100 birds /group and five replicates) and provided diets enriched with varying concentrations of QRT (0, 200, 400, and 600 ppm) for six weeks. Visual scanning revealed significant (P > 0.05) improvements in feeding and body care behaviors, accompanied by reduced instances of idleness and walking in the QRT-supplemented groups. Moreover, QRT supplementation exerted a substantial (P > 0.05) positive influence on weight gain, feed intake and the final body weight of the broilers. In-depth evaluation of immune parameters, QRT supplementation elicited significant (P > 0.05) enhancements in immune functions, including improved spleen, thymus, and bursa indices, enhanced secretion of immunoglobulin M (IgM) and immunoglobulin A (IgA), and stimulated humoral immunity against sheep red blood cells (SRBCs). Furthermore, QRT displays potent antioxidant properties, as showed by diminished splenic malondialdehyde levels and augmented activity of antioxidative stress enzymes. Remarkably, QRT supplementation elicited dose-dependent upregulation (P < 0.001) of key immune-related genes, such as intеrlеukin-4 (IL-4), interferon-γ (INF-γ), Toll-like receptor 2 (TLR2), and tumor necrosis factor-α (TNF-α) in the splenic tissue. Collectively, these mechanistic insights underscore the profound impact of QRT as a functional feed additive, fostering enhanced behavior, performance, and immune function in broiler chickens, while delivering robust antioxidant fortification.
Collapse
Affiliation(s)
- Sara Elsayed El-Kazaz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Mona Hafez Hafez
- Physiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser Said El-Sayed
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
3
|
Wang Z, Wang P, Zhou Y, Zhuang S. Quercetin Supplementation Improves Intestinal Digestive and Absorptive Functions and Microbiota in Rats Fed Protein-Oxidized Soybean Meal: Transcriptomics and Microbiomics Insights. Animals (Basel) 2024; 14:2326. [PMID: 39199859 PMCID: PMC11350852 DOI: 10.3390/ani14162326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
To clarify the nutritional mechanisms of quercetin mitigation in the digestive and absorptive functions in rats fed protein-oxidized soybean meal, 48 three-week-old male SD rats were randomly allocated into a 2 × 2 factorial design with two soybean meal types (fresh soybean meal or protein-oxidized soybean meal) and two quercetin levels (0 or 400 mg/kg) for a 28-day feeding trial. The protein-oxidized soybean meal treatment decreased (p < 0.05) the relative weights of the pancreas, stomach, and cecum, duodenal villus height, pancreatic and jejunal lipase activities, apparent ileal digestibility of amino acids, and apparent total tract digestibility of dry matter, crude protein, and ether extract. The supplementation of quercetin in the protein-oxidized soybean meal diet reversed (p < 0.05) the decreases in the duodenal length, ileal villus height, lipase activity, apparent ileal digestibility of amino acids, and apparent total tract digestibility of dry matter, crude protein, and ether extract. Transcriptomics revealed that the "alanine transport" and "lipid digestion and absorption" pathways were downregulated by the protein-oxidized soybean meal compared with fresh soybean meal, while the "basic amino acid transmembrane transporter activity" and "lipid digestion and absorption" pathways were upregulated by the quercetin supplementation. Microbiomics revealed that the protein-oxidized soybean meal increased the protein-degrading and inflammation-triggering bacteria in the cecum, while the relative abundances of beneficial bacteria were elevated by the quercetin supplementation.
Collapse
Affiliation(s)
| | | | | | - Su Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; (Z.W.); (P.W.); (Y.Z.)
| |
Collapse
|
4
|
Ahammad GS, Kim IH. Effects of Micellar Quercetin Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbiota, Meat Quality, and Physiological Status in Broiler Chickens. Animals (Basel) 2024; 14:1918. [PMID: 38998030 PMCID: PMC11240820 DOI: 10.3390/ani14131918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigated the impacts of micellar quercetin (MQ) supplementation on growth performance, meat stability, excreta gas emissions, and physiological status. During a 35-day trial, 640 Ross 308 broilers were utilized. These birds were one day old, with an average initial body weight of 43.34 ± 1.43 g. They were randomly distributed across four experimental diets, each consisting of 10 replicate pens with 16 chicks per pen. The diets included the following: control (CON) with 0% micellar quercetin (MQ), TRT1 with 0.025% MQ, TRT2 with 0.050% MQ, and TRT3 with 0.100% MQ. The results indicate that broilers fed diets with increasing levels of MQ exhibited significantly higher body weight gains (BWGs) compared to the control group (p < 0.05). There was a clear linear increase in the breast muscle percentage with higher levels of quercetin supplementation (p < 0.05), while the breast color remained consistent across all groups (p > 0.05). Both cooking loss and drip loss exhibited a linear decrease as MQ levels in the diet increased (p < 0.05). The level of aspartate aminotransferase (AST) tended to decrease with higher MQ levels. Thyroxine (T4) and lymphocyte levels also showed a linear increase with increasing MQ dosage in the diet (p < 0.05). However, no significant effects were observed on nutrient digestibility, gas emissions, or fecal microbial components (Lactobacillus, E. coli, and Salmonella) with higher levels of MQ supplementation (p > 0.05). In conclusion, augmenting quercetin levels in the diet positively influenced the BWG, breast muscle development, and meat quality parameters such as cooking loss and drip loss, with beneficial effects on blood profiles.
Collapse
Affiliation(s)
| | - In Ho Kim
- Department of Animal Biotechnology, Dankook University, No. 29 Anseodong, Cheonan 330-714, Republic of Korea;
| |
Collapse
|
5
|
Biswas S, Ahn JM, Kim IH. Assessing the potential of phytogenic feed additives: A comprehensive review on their effectiveness as a potent dietary enhancement for nonruminant in swine and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:711-723. [PMID: 38264830 DOI: 10.1111/jpn.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024]
Abstract
Phytogenic feed additives (PFAs) often referred to as phytobiotics or botanical feed additives, are natural compounds derived from various plants, herbs, spices and other botanical sources. These feed additives are intended to serve a variety of purposes, including an immune system regulator, an antimicrobial, an antimutagenic, an antioxidant and a growth promoter. They are composed of bioactive compounds extracted from plants, including essential oils, polyphenols, terpenoids and flavonoids. They are mostly utilized as substitute antibiotic growth promoters in nonruminant (swine and poultry) livestock production, owing to the prohibition of antibiotic usage in the feed industry. It has been thoroughly examined to ascertain their impact on intestinal health and activity, correlation with animals' effective health and well-being, productivity, food security and environmental impact. The potential uses of these feed additives depend on the properties of herbs, the comprehension of their principal and secondary components, knowledge of their mechanisms of action, the safety of animals and the products they produce. They are gaining recognition as effective and sustainable tools for promoting animal health and performance while reducing the reliance on antibiotics in nonruminant nutrition. Their natural origins, multifaceted benefits and alignment with consumer preferences make them a valuable addition to modern animal farming process. However, because of their inconsistent effects and inadequate knowledge of the mechanisms of action, their usage as a feed additive has been limited. This review offers a comprehensive assessment of the applications of PFAs as an effective feed supplement in swine and poultry nutrition. In summary, this comprehensive review provides current knowledge, identifies gaps in research and emphasizes the potential of phytogenic additives to foster sustainable and healthier livestock production systems while addressing the global concerns associated with antibiotic use in livestock farming.
Collapse
Affiliation(s)
- Sarbani Biswas
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| | - Je M Ahn
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| |
Collapse
|
6
|
Wu M, Zhang Y, Guo P, Liu H, Xia L, Wang M, Zeng C, Wang H, Shang F. Full-Length Transcriptome Sequencing and Comparative Transcriptomic Analyses Provide Comprehensive Insight into Molecular Mechanisms of Flavonoid Metabolites Biosynthesis in Styphnolobium japonicum. Genes (Basel) 2024; 15:329. [PMID: 38540388 PMCID: PMC10970609 DOI: 10.3390/genes15030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
Styphnolobium japonicum L. is a commonly consumed plant in China, known for its medicinal and nutritional benefits. This study focuses on the medicinal properties influenced by flavonoid metabolites, which vary during flower development. Utilizing full-length transcriptome sequencing on S. japonicum flowers, we observed changes in gene expression levels as the flowers progressed through growth stages. During stages S1 and S2, key genes related to flavonoid synthesis (PAL, 4CL, CHS, F3H, etc.) exhibited heightened expression. A weighted gene co-expression network analysis (WGCNA) identified regulatory genes (MYB, bHLH, WRKY) potentially involved in the regulatory network with flavonoid biosynthesis-related genes. Our findings propose a regulatory mechanism for flavonoid synthesis in S. japonicum flowers, elucidating the genetic underpinnings of this process. The identified candidate genes present opportunities for genetic enhancements in S. japonicum, offering insights into potential applications for improving its medicinal attributes.
Collapse
Affiliation(s)
- Miao Wu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Yu Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| | - Peng Guo
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| | - Huiyuan Liu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Linkui Xia
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Mengyuan Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Chuqi Zeng
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China; (M.W.)
| | - Hongwei Wang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| | - Fude Shang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou 450002, China (H.W.)
| |
Collapse
|
7
|
Liang HQ, Fan DF, Hu WY, Wu FY, Tan K, Zhao PY, Han SJ, Chen BJ. Effects of quercetagetin on the growth performance, nutrient digestibility, slaughter performance, meat quality, and antioxidant capacity of broiler chickens. Anim Sci J 2024; 95:e70008. [PMID: 39552132 DOI: 10.1111/asj.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/07/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
This study investigated the effects of quercetagetin (QG) on growth performance, nutrient digestibility, meat quality, and antioxidant capacity of broilers. Four hundred 1-day-old Cobb broilers were randomly divided into five diets, each with eight replicates and 10 birds per replicate. The diets included a basal diet, and four diets with 25, 50, 100, and 200 mg/kg QG supplemented in basal diet. Body weight on d 21, average daily gain, and average daily feed intake on days 1-21 were quadratically (p < 0.05) increased with increasing QG supplementation. The apparent digestibility of crude protein, ether extract, and total phosphorus increased linearly (p < 0.05) from day 1 to 21, and increased quadratically (p < 0.05) from day 22 to 42. The L* values of leg muscles were lower (p < 0.05) in QG groups than control group. QG supplementation quadratically (p < 0.05) elevated glutathione peroxidase (GSH-Px) activity and reduced malondialdehyde (MDA) levels in serum. The L* value was negatively correlated with GSH-Px. These results suggested that QG supplementation (50-100 mg/kg) enhanced early growth, nutrient digestibility, and antioxidant status in broilers, highlighting its functional properties and potential as an additive to improve broiler productivity.
Collapse
Affiliation(s)
- Hui-Qing Liang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China
| | - Dong-Feng Fan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China
| | - Wen-Yue Hu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China
| | - Feng-Yang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China
| | - Kai Tan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China
| | - Peng-Yu Zhao
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, People's Republic of China
| | - Shuai-Juan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China
| | - Bao-Jiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China
| |
Collapse
|
8
|
Biswas S, Cho S, Ahn JM, Kim IH. Influences of flavonoid (quercetin) inclusion to corn-soybean-gluten meal-based diet on broiler performance. J Anim Physiol Anim Nutr (Berl) 2024; 108:64-71. [PMID: 37555477 DOI: 10.1111/jpn.13868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/09/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Quercetin (a predominant flavonoid) is considered to have antimicrobial and antioxidant properties. This trial was conducted to evaluate the impact of graded doses of quercetin (QS) on growth efficiency, nutrient retention, faecal score, footpad lesion score, tibia ash and meat quality. In a 32-day feeding test, a total of 576 1-day-old Ross 308 broilers (male) were allocated arbitrarily with an average body weight of 41 ± 0.5 g. The trial had four dietary treatments with eight repetitions of 18 birds per pen and a basal diet incorporating 0%, 0.02%, 0.04% and 0.06% of QS. As the QS dosage increased, body weight gain tended to increase linearly on Days 9-21 (p = 0.069) and overall period (p = 0.079). Similarly, feed intake increased (p = 0.009) linearly with the increasing doses of QS on Days 9-21. Likewise, there was a linear improvement in dry matter (p = 0.002) and energy (p = 0.016) digestibility after QS administration. Moreover, the inclusion of QS supplement (0%-0.06%) linearly increased (p = 0.012) tibia ash in broilers. However, the faecal score and footpad lesion score showed no significant outcome (p > 0.05). By giving broilers a graded amount of QS, the relative organ weights of breast muscle (p = 0.009) and spleen (p = 0.006) improved linearly, meat colour lightness increased (p = 0.015), redness tended to improve (p = 0.065) linearly and drip loss decreased (p = 0.015) linearly. The inclusion of QS in the graded-level diet led to improvements in growth efficiency, nutrient absorption, meat quality and tibia ash, which recommended it as a beneficial feed additive for the broiler.
Collapse
Affiliation(s)
- Sarbani Biswas
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| | - Sungbo Cho
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| | - Je Min Ahn
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, South Korea
| |
Collapse
|
9
|
Meng WS, Zou Q, Xiao Y, Ma W, Zhang J, Wang T, Li D. Growth performance and cecal microbiota of broiler chicks as affected by drinking water disinfection and/or herbal extract blend supplementation. Poult Sci 2023; 102:102707. [PMID: 37216884 PMCID: PMC10209021 DOI: 10.1016/j.psj.2023.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental exposures during early life are important for animals' intestinal microbiota composition and their production performance. This experiment investigated the growth performance, hematology parameters, jejunal morphology, and cecal microbiota of broiler chicks as affected by exogenous factors from the aspects of drinking water quality and dietary manipulation. A total of 480-day-old broiler chicks (Arbor acre; 41.59 ± 0.88 g) were randomly assigned into 4 groups (CON, HWGM, CA, CAHWGM). Each group had 6 replicates with 20 birds per replicate. Broiler chicks in CON group were fed with basal diet and drank normal drinking water; in HWGM group were fed with basal diet supplemented with 1.5g/kg herbal extract blend (hops, grape seed, and wheat germ) and drank normal drinking water; in CA group were fed with basal diet and drank sodium dichlorocyanurate (50 mg/L) treated-drinking water; in CAHWGM group were fed with basal diet supplemented with 1.5 g/kg herbal extract blend and drank chlorinated drinking water. The experimental period was 42 d. We found that broiler chicks drank chlorinated drinking water led to an increase in body weight gain and feed efficiency during d 22 to 42 and 1 to 42, as well as a decrease in cecal Dysgonomonas and Providencia abundance. Dietary supplementation of herbal extract blend increased cecal Lactobacillus and Enterococcus abundance, whereas decreased Dysgonomonas abundance. Moreover, we observed that cecal Dysgonomonas abundance synergistically decreased by treating drinking water with sodium dichlorocyanurate and supplementing herbal extract blend to the diet. Therefore, results obtained in this study indicated that providing chlorinated drinking water is an effective strategy to improve the growth performance of broiler chicks by regulating intestinal microbiota. Additionally, dietary supplementation of herbal extract blend alone or combined with chlorinated drinking water is able to regulate cecal microbiota.
Collapse
Affiliation(s)
- Wei Shuang Meng
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Wei Ma
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiawen Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Jinzhou Zhongke Gene Detection Service Co., Ltd., Jinzhou 121219, China.
| |
Collapse
|
10
|
Deryabin DG, Kosyan DB, Inchagova KS, Duskaev GK. Plant-Derived Quorum Sensing Inhibitors (Quercetin, Vanillin and Umbelliferon) Modulate Cecal Microbiome, Reduces Inflammation and Affect Production Efficiency in Broiler Chickens. Microorganisms 2023; 11:1326. [PMID: 37317300 DOI: 10.3390/microorganisms11051326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Quorum sensing inhibitors (QSIs) are an attractive alternative to antibiotic growth promoters in farmed animal nutrition. The goal of the study was the diet supplementation of Arbor Acres chickens with quercetin (QC), vanillin (VN), and umbelliferon (UF), which are plant-derived QSIs preliminarily showing cumulative bioactivity. Chick cecal microbiomes were analyzed by 16s rRNA sequencing, inflammation status was assessed by blood sample analyses, and zootechnical data were summarized in the European Production Efficiency Factor (EPEF). When compared to the basal diet control group, a significant increase in the Bacillota:Bacteroidota ratio in the cecal microbiome was found in all experimental subgroups, with the highest expression > 10 at VN + UV supplementation. Bacterial community structure in all experimental subgroups was enriched with Lactobacillaceae genera and also changed in the abundance of some clostridial genera. Indices of richness, alpha diversity, and evenness of the chick microbiomes tended to increase after dietary supplementation. The peripheral blood leukocyte content decreased by 27.9-45.1% in all experimental subgroups, likely due to inflammatory response reduction following beneficial changes in the cecal microbiome. The EPEF calculation showed increased values in VN, QC + UF, and, especially, VN + UF subgroups because of effective feed conversion, low mortality, and broiler weight daily gain.
Collapse
Affiliation(s)
- Dmitry G Deryabin
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Dianna B Kosyan
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Ksenia S Inchagova
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Galimzhan K Duskaev
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| |
Collapse
|
11
|
Cui Y, Diao Z, Fan W, Wei J, Zhou J, Zhu H, Li D, Guo L, Tian Y, Song H, Su Y. Effects of dietary inclusion of alfalfa meal on laying performance, egg quality, intestinal morphology, caecal microbiota and metabolites in Zhuanghe Dagu chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2067009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yan Cui
- School of Life Sciences, Jilin Agricultural University, Changchun, China
- Department of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Zipeng Diao
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Wentao Fan
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jiali Wei
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jiasheng Zhou
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongyan Zhu
- Department of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Desheng Li
- Department of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Longwei Guo
- Shenyang Institute of Food and Drug Control, Shenyang, China
| | - Yumin Tian
- Department of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hui Song
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yuhong Su
- Department of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|