1
|
Liu M, Li L, Xue Y, Sun M, Xiang F, Zhao K, Zhang W, Lei B, Shang C, Hu Y, Yuan W. Effect of intestinal microbiota on duck short-beak and dwarf syndrome caused by novel goose parvovirus. Poult Sci 2024; 103:103853. [PMID: 38795515 PMCID: PMC11199938 DOI: 10.1016/j.psj.2024.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
Short-beak and dwarf syndrome (SBDS) is caused by infection with novel goose parvovirus (NGPV), which leads to intestinal dysbiosis, developmental delay, short beak, lameness, and paralysis in ducks and is the cause of skeletal health problems. NGPV infection can cause intestinal microbial disturbances, but it is still unclear whether the intestinal microbiota affects the pathogenicity of NGPV. Here, the effects of intestinal microbiota on NGPV-induced SBDS in Cherry Valley ducks were assessed by establishing a duck model for gut microflora depletion/reestablishment through antibiotics (ABX) treatment/fecal microbiota transplanted (FMT). By measuring body weight, beak length, beak width and tarsal length, we found that SBDS clinical symptoms were alleviated in ducks treated with ABX, but not in FMT ducks. Next, we conducted a comprehensive analysis of bone metabolism, gut barrier integrity, and inflammation levels using quantitative real-time PCR (qPCR), enzyme linked immunosorbent assay (ELISA), biochemical analysis and histological analysis. The results showed that ABX treatment improved bone quality reduced bone resorption, mitigated tissue lesions, protected intestinal barrier integrity, and inhibited systemic inflammation in NGPV-infected ducks. Moreover, cecal microflora composition and short-chain fatty acids (SCFAs) production were examined by bacterial 16S rRNA sequencing and gas chromatography. The results revealed that ABX treatment mitigated the decreased abundance of Firmicutes and Bacteroidota in NGPV-infected ducks, as well as increased SCFAs production. Furthermore, ABX treatment reduced the mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) and nuclear factor κB (NF-κB) expression, which are correlated with systemic inflammation in SBDS ducks. These findings suggested that intestinal microflora depletion alleviated NGPV-induced SBDS by maintaining intestinal homeostasis, inhibiting inflammatory response and alleviating bone resorption. These results provide evidence for the pivotal role of intestinal microbiota in the process of SBDS and contribute a theoretical basis for the feasibility of microecological preparation as a method to control SBDS.
Collapse
Affiliation(s)
- Mandi Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Yongzhi Xue
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Maoyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Fengjun Xiang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | | | - Yibin Hu
- Beijing Centrebio Biological Co., Ltd, Beijing 102629, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| |
Collapse
|
2
|
Zhang H, Wang Y, Wang Y, Wei B, Wang L, Nguyen MT, Lv X, Huang Y, Chen W. Fermented calcium butyrate supplementation in post-peak laying hens improved ovarian function and tibia quality through the "gut-bone" axis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:350-362. [PMID: 38362518 PMCID: PMC10867563 DOI: 10.1016/j.aninu.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/21/2023] [Accepted: 10/15/2023] [Indexed: 02/17/2024]
Abstract
The compromised egg quality and leg abnormality during the end of the laying cycle (after 40 weeks) have been leading to poor animal welfare and substantial economic losses. Therefore, the effects of fermented calcium (Ca) butyrate, produced by fermentation by Clostridium butyricum, on production, eggshell quality, and tibial property of hens were explored. A total of 192 Hy-line brown laying hens at 50-week-old were assigned to a basal diet or the basal diet with 300 mg/kg of the fermented Ca butyrate from 50 to 58 weeks of age. Each treatment had 6 replicates with 16 hens each. The diet supplemented with 300 mg/kg fermented Ca butyrate notably increased egg weight, ovarian follicle number, and eggshell strength (P = 0.072) as compared to the basal diet, which were associated with cytokine secretion, toll-like receptor signaling pathways, and intestinal immunity based on the RNA-seq data from the granulosa. Dietary Ca butyrate inclusion decreased the expression of ileal tumor necrosis factor-alpha and serum pro-inflammatory cytokine concentration, as well as increased the content of serum immunoglobulin A when compared to the basal diet (both P < 0.05). The birds that received fermented Ca butyrate diets exhibited higher villus height (P < 0.05) and upregulated expression of tight junction proteins, whereas it did not alter the composition of cecal microbiota (P > 0.05). In addition, the diet with fermented Ca butyrate reduced the number of osteoclasts in the proximal tibia and the level of C-terminal cross-linked telopeptide of type I collagen, a bone resorption marker (P < 0.05), whereas it tended to increase the concentration of the procollagen type I N-terminal propeptide that reflects bone formation marker in serum. Moreover, the layers fed fermented Ca butyrate diets possessed higher (P < 0.05) bone area and trabecular number of the proximal tibia, yield load, and ultimate load than those that consumed basal diets. Collectively, dietary fermented Ca butyrate supplementation in post-peak layer diets improved the ovarian function and tibia quality, which might be related to enhancing intestinal integrity and consequently decreasing inflammation mediated bone resorption.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Yongshuai Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilu Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Wei
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minh Tu Nguyen
- Department of Agriculture and Forestry, Hue University, Hue, 49000, Viet Nam
| | - Xiangyun Lv
- Charoen Pokphand Group Co., Ltd. Zhumadian, 463000, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
3
|
Hu P, Yuan M, Guo B, Lin J, Yan S, Huang H, Chen JL, Wang S, Ma Y. Citric Acid Promotes Immune Function by Modulating the Intestinal Barrier. Int J Mol Sci 2024; 25:1239. [PMID: 38279237 PMCID: PMC10817003 DOI: 10.3390/ijms25021239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Amidst increasing concern about antibiotic resistance resulting from the overuse of antibiotics, there is a growing interest in exploring alternative agents. One such agent is citric acid, an organic compound commonly used for various applications. Our research findings indicate that the inclusion of citric acid can have several beneficial effects on the tight junctions found in the mouse intestine. Firstly, the study suggests that citric acid may contribute to weight gain by stimulating the growth of intestinal epithelial cells (IE-6). Citric acid enhances the small intestinal villus-crypt ratio in mice, thereby promoting intestinal structural morphology. Additionally, citric acid has been found to increase the population of beneficial intestinal microorganisms, including Bifidobacterium and Lactobacillus. It also promotes the expression of important protein genes such as occludin, ZO-1, and claudin-1, which play crucial roles in maintaining the integrity of the tight junction barrier in the intestines. Furthermore, in infected IEC-6 cells with H9N2 avian influenza virus, citric acid augmented the expression of genes closely associated with the influenza virus infection. Moreover, it reduces the inflammatory response caused by the viral infection and thwarted influenza virus replication. These findings suggest that citric acid fortifies the intestinal tight junction barrier, inhibits the replication of influenza viruses targeting the intestinal tract, and boosts intestinal immune function.
Collapse
Affiliation(s)
- Pengcheng Hu
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
| | - Meng Yuan
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
| | - Bolun Guo
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Jiaqi Lin
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Shihong Yan
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Huiqing Huang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Ji-Long Chen
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Song Wang
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Yanmei Ma
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| |
Collapse
|
4
|
Meng WS, Sui X, Xiao Y, Zou Q, Cui Y, Wang T, Chen Z, Li D. Regulating effects of chlorinated drinking water on cecal microbiota of broiler chicks. Poult Sci 2023; 102:103140. [PMID: 37844529 PMCID: PMC10585633 DOI: 10.1016/j.psj.2023.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
In this study, 2 types of drinking water were provided to broiler chicks to evaluate the relationship between the bacterial load of drinking water and cecal microbiota. One type of drinking water was untreated, while the other type was daily treated with sodium dichlorocyanurate (50 mg/L). A total of 240 broiler chicks were divided into 2 groups based on their initial body weight. There were 6 replicates in each group, and each replicate cage contained 20 birds. Each cage was assigned to a different floor of the battery cage. On the final day, water samples were collected from each replicate cage at the opening of the drinking cup height, and one bird was selected from each replicate cage to obtain cecal content samples for measuring microbiota composition using the 16S rRNA technique. We found that drinking water treated with sodium dichlorocyanurate significantly reduced the richness and diversity of microbiota and diminished/disappeared most gram-negative bacteria. Broiler chicks that consumed chlorinated drinking water exhibited changes in the composition of cecal microbiota, with Alistipes serving as the marker species in the cecal content of broiler chicks that consumed untreated water, whereas AF12 served as the marker species in the cecal content of broiler chicks that consumed chlorinated drinking water. Functional prediction using the MetaCyc database and species composition analysis of metabolic pathways showed that changes in 7 metabolic pathways were related to the abundance of Providencia. Therefore, we concluded that chlorinated drinking water reduced the bacterial load in drinking water, thereby altering the cecal microbiota composition and regulating the metabolic activity of broiler chicks.
Collapse
Affiliation(s)
- Wei Shuang Meng
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Xinxin Sui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou 121001, China
| | - Zeliang Chen
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou 121001, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
5
|
Zou Q, Meng W, Wang C, Wang T, Liu X, Li D. Sodium dichloroisocyanurate: improving broiler health by reducing harmful microbial levels in the waterline. Front Vet Sci 2023; 10:1234949. [PMID: 37588972 PMCID: PMC10427219 DOI: 10.3389/fvets.2023.1234949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Sodium dichloroisocyanurate (NaDCC) is commonly used for treating drinking water, industrial water, and wastewater. This study aimed to investigate the potential effects of NaDCC-treated waterline drinking water on the growth of AA+ broilers by reducing microbial levels in the waterline. A total of 480 healthy 1-day-old AA+ broilers (46.77 ± 0.50 g) were selected for the experiment and randomly divided into four groups with six replicates of 20 birds each. The control group received regular drinking water, while the test groups received drinking water with NaDCC concentrations of 10, 30, and 50 mg/L. The test groups consumed the treated water on specific days throughout the 42-day experimental period. Results showed that NaDCC treatment significantly reduced the levels of E. coli, Salmonella, S. aureus and Moulds in the drinking water at the waterline (p < 0.05). Drinking water with NaDCC also led to reduced broiler fecal emissions of NH3 and H2S, as well as reduced counts of E. coli, Salmonella, S. aureus and Moulds (p < 0.05), particularly at 30 mg/L and 50 mg/L concentrations. Broilers consuming NaDCC at 50 mg/L exhibited a significant increase in ADG from days 1-42 (p < 0.05). The levels of E. coli, Salmonella, S. aureus and Moulds in the drinking water at the waterline were significantly and positively correlated with the bacterial count in the feces (p < 0.05, R > 0.6). Additionally, bacterial levels in drinking water and broiler feces were negatively correlated with broiler production performance indicators, including ADG, ADFI, F/G and AWC. In conclusion, NaDCC can indirectly enhance broiler performance by reducing the levels of harmful bacteria in the waterline without affecting normal drinking water. The addition of 30 mg/L or 50 mg/L of NaDCC to the waterline in poultry production can effectively control harmful microorganisms and improve poultry health. Based on the experiment's results, it is recommended to preferentially use 30 mg/L NaDCC in the waterline to reduce farming costs.
Collapse
Affiliation(s)
- Qiangqiang Zou
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Weishuang Meng
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Chunqiang Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tieliang Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou, China
| | - Xiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Desheng Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
6
|
Meng WS, Zou Q, Xiao Y, Ma W, Zhang J, Wang T, Li D. Growth performance and cecal microbiota of broiler chicks as affected by drinking water disinfection and/or herbal extract blend supplementation. Poult Sci 2023; 102:102707. [PMID: 37216884 PMCID: PMC10209021 DOI: 10.1016/j.psj.2023.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental exposures during early life are important for animals' intestinal microbiota composition and their production performance. This experiment investigated the growth performance, hematology parameters, jejunal morphology, and cecal microbiota of broiler chicks as affected by exogenous factors from the aspects of drinking water quality and dietary manipulation. A total of 480-day-old broiler chicks (Arbor acre; 41.59 ± 0.88 g) were randomly assigned into 4 groups (CON, HWGM, CA, CAHWGM). Each group had 6 replicates with 20 birds per replicate. Broiler chicks in CON group were fed with basal diet and drank normal drinking water; in HWGM group were fed with basal diet supplemented with 1.5g/kg herbal extract blend (hops, grape seed, and wheat germ) and drank normal drinking water; in CA group were fed with basal diet and drank sodium dichlorocyanurate (50 mg/L) treated-drinking water; in CAHWGM group were fed with basal diet supplemented with 1.5 g/kg herbal extract blend and drank chlorinated drinking water. The experimental period was 42 d. We found that broiler chicks drank chlorinated drinking water led to an increase in body weight gain and feed efficiency during d 22 to 42 and 1 to 42, as well as a decrease in cecal Dysgonomonas and Providencia abundance. Dietary supplementation of herbal extract blend increased cecal Lactobacillus and Enterococcus abundance, whereas decreased Dysgonomonas abundance. Moreover, we observed that cecal Dysgonomonas abundance synergistically decreased by treating drinking water with sodium dichlorocyanurate and supplementing herbal extract blend to the diet. Therefore, results obtained in this study indicated that providing chlorinated drinking water is an effective strategy to improve the growth performance of broiler chicks by regulating intestinal microbiota. Additionally, dietary supplementation of herbal extract blend alone or combined with chlorinated drinking water is able to regulate cecal microbiota.
Collapse
Affiliation(s)
- Wei Shuang Meng
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Wei Ma
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiawen Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Jinzhou Zhongke Gene Detection Service Co., Ltd., Jinzhou 121219, China.
| |
Collapse
|
7
|
Bio-Fermented Malic Acid Facilitates the Production of High-Quality Chicken via Enhancing Muscle Antioxidant Capacity of Broilers. Antioxidants (Basel) 2022; 11:antiox11122309. [PMID: 36552518 PMCID: PMC9774538 DOI: 10.3390/antiox11122309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Malic acid, an intermediate of the tricarboxylic acid (TCA) cycle, is a promising acidifier with strong antioxidant capacity. This study aimed to evaluate the effects of bio-fermented malic acid (BFMA) on promoting the body health, performance and meat quality of broilers. A total of 288 one-day-old Arbor Acres male broiler chicks were randomly divided into four treatments with six replicates in each. Every replicate had 12 chicks. Four experimental diets contained 0, 4, 8, and 12 g/kg BFMA, respectively. During the 42-day trial, mortality was recorded daily, feed intake and body weight of each replicate being recorded every week. Blood samples were collected on days 21 and 42 for chemical analysis. After slaughter at the age of 42 days, the carcass traits and meat quality of the broilers were measured, breast muscle samples were collected for the determination of antioxidant capacity, and cecal digesta were pretreated for microbiota analysis. Dietary BFMA significantly increased feed intake and daily gain, and decreased feed conversion ratio and death and culling ratio of the broilers at the earlier stage. The water-holding capacity of breast muscle indicated by the indexes of dripping loss and cooking loss was significantly increased by BFMA, especially at the addition level of 8 g/kg. Dietary BFMA significantly decreased the activity of superoxide dismutase and contents of immunoglobulin A and glutathione, and increased contents of immunoglobulin G and M in serum of the broilers. The contents of glutathione, inosinic acid, and total antioxidant capacity and the activities of glutathione-Px and superoxide dismutase were significantly increased by dietary BFMA, with the level of 8 g/kg best. The diversity of cecal microbiota of broilers was obviously altered by BFMA. In conclusion, as one of several acidifiers, addition of BFMA in diets could improve the performance and body health of broilers, probably by reinforcing immunity and perfecting cecal microbiota structure. As one of the intermediates of the TCA cycle, BFMA increases the water-holding capacity of breast muscle of broilers, probably through reducing lactate accumulates and enhancing antioxidant capacity.
Collapse
|
8
|
Combination of Cinnamaldehyde with Carvacrol or Thymol Improves the Mechanical Properties of Tibia in Post-Peak Laying Hens. Animals (Basel) 2022; 12:ani12223108. [PMID: 36428337 PMCID: PMC9687002 DOI: 10.3390/ani12223108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Roles of plant-derived cinnamaldehyde, carvacrol, and thymol in the gut and bone health of laying hens was evaluated in the present study. After acclimation for 2 weeks, a total 384 of 52-week-old laying hens were allocated into three groups for 6 weeks: (1) basal diet group (Ctrl), (2) combination of cinnamaldehyde with carvacrol group (CAR+CIN), and (3) blend of cinnamaldehyde with thymol (THY+CIN). The dietary essential oil level was 100 mg/kg. Each treatment group had eight replicate pens (16 birds/pen). The stiffness and ultimate load of the tibiae from both the CAR+CIN and THY+CIN groups were higher than that of the Ctrl group (p < 0.05), along with comparable tibia ash, calcium, and phosphorus content among groups. At the same time, the manipulation of essential oils upregulated the transcription abundances of intestinal barrier proteins to varying degrees, whereas the experimental treatment failed to affect the composition in phyla of cecal microbiota. When compared to the Ctrl group, birds fed the CAR+CIN and THY+CIN diet displayed decreased bone resorption markers, reduced interleukin-1 concentrations, and increased transforming growth factor beta levels in serum. These findings suggest that cinnamaldehyde with carvacrol or thymol in feed of hens could enhance intestinal barrier and improve the mechanical properties of tibiae through structural modelling but not increase the mineral density, which might be involved in suppressing inflammation-mediated bone resorption.
Collapse
|
9
|
Liu Z, Li C, Liu M, Song Z, Moyer MP, Su D. The Low-density Lipoprotein Receptor-related Protein 6 Pathway in the Treatment of Intestinal Barrier Dysfunction Induced by Hypoxia and Intestinal Microbiota through the Wnt/β-catenin Pathway. Int J Biol Sci 2022; 18:4469-4481. [PMID: 35864969 PMCID: PMC9295061 DOI: 10.7150/ijbs.72283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/03/2022] [Indexed: 11/12/2022] Open
Abstract
Our study is to explore the key molecular of Low-density lipoprotein receptor-related protein 6 (LRP6) and the related Wnt/β-catenin pathway regulated by LRP6 during the intestinal barrier dysfunction. Colorectal protein profile analysis showed that LRP6 expression was decreased in dextran sulfate sodium (DSS)-induced colitis mice, and mice received fecal bacteria transplantation from stroke patients. Mice with intestinal hypoxia and intestinal epithelial cells cultured in hypoxia showed decreased expression of LRP6. Overexpression of LPR6 or its N-terminus rescued the Wnt/β-catenin signaling pathway which was inhibited by hypoxia and endoplasmic reticulum stress. In mice overexpressing of LRP6, the expression of β-catenin and DKK1 increased, Bcl2 decreased, and Bax increased. Mice with LRP6 knockout showed an opposite trend, and the expression of Claudin2, Occludin and ZO-1 decreased. Two drugs, curcumin and auranofin could alleviate intestinal barrier damage in DSS-induced colitis mice by targeting LRP-6. Therefore, gut microbiota dysbiosis and hypoxia can inhibit the LRP6 and Wnt/β-catenin pathway, and drugs targeting LRP6 can protect the intestinal barrier.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Chao Li
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Min Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Zhen Song
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | | | - Dan Su
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University.,INCELL Corporation, San Antonio, Texas, 78249, USA.,Department of Anorectal surgery. The Sixth Affiliated Hospital of Sun Yatsen University, Guangzhou 510665, China
| |
Collapse
|