1
|
Vermeire B, Walsh M, Cox E, Devriendt B. The lipopolysaccharide structure affects the detoxifying ability of intestinal alkaline phosphatases. BMC Vet Res 2024; 20:358. [PMID: 39127648 DOI: 10.1186/s12917-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lipopolysaccharide (LPS) is one of the most potent mediators of inflammation. In swine husbandry, weaning is associated with LPS-induced intestinal inflammation, resulting in decreased growth rates due to malabsorption of nutrients by the inflamed gut. A potential strategy to treat LPS-mediated disease is administering intestinal alkaline phosphatase (IAP). The latter can detoxify lipid A, the toxic component of LPS, by removal of phosphate groups. Currently, 183 LPS O-serotypes from E. coli have been described, however, comparative experiments to elucidate functional differences between LPS serotypes are scarce. In addition, these functional differences might affect the efficacy of LPS detoxifying enzymes. Here, we evaluated the ability of four LPS serotypes (O26:B6, O55:B5, O111:B4 and O127:B8) derived from Escherichia coli to trigger the secretion of pro-inflammatory cytokines by porcine PBMCs. We also tested the ability of three commercially available IAPs to detoxify these LPS serotypes. The results show that LPS serotypes differ in their ability to trigger cytokine secretion by immune cells, especially at lower concentrations. Moreover, IAPs displayed a different detoxification efficiency of the tested serotypes. Together, this study sheds light on the impact of LPS structure on the detoxification by IAPs. Further research is however needed to elucidate the LPS serotype-specific effects and their implications for the development of novel treatment options to alleviate LPS-induced gut inflammation in weaned piglets.
Collapse
Affiliation(s)
- Bjarne Vermeire
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | | | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| |
Collapse
|
2
|
Yin X, Wang W, Seah SYK, Mine Y, Fan MZ. Deglycosylation Differentially Regulates Weaned Porcine Gut Alkaline Phosphatase Isoform Functionality along the Longitudinal Axis. Pathogens 2023; 12:pathogens12030407. [PMID: 36986329 PMCID: PMC10053101 DOI: 10.3390/pathogens12030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Gut alkaline phosphatases (AP) dephosphorylate the lipid moiety of endotoxin and other pathogen-associated-molecular patterns members, thus maintaining gut eubiosis and preventing metabolic endotoxemia. Early weaned pigs experience gut dysbiosis, enteric diseases and growth retardation in association with decreased intestinal AP functionality. However, the role of glycosylation in modulation of the weaned porcine gut AP functionality is unclear. Herein three different research approaches were taken to investigate how deglycosylation affected weaned porcine gut AP activity kinetics. In the first approach, weaned porcine jejunal AP isoform (IAP) was fractionated by the fast protein-liquid chromatography and purified IAP fractions were kinetically characterized to be the higher-affinity and lower-capacity glycosylated mature IAP (p < 0.05) in comparison with the lower-affinity and higher-capacity non-glycosylated pre-mature IAP. The second approach enzyme activity kinetic analyses showed that N-deglycosylation of AP by the peptide N-glycosidase-F enzyme reduced (p < 0.05) the IAP maximal activity in the jejunum and ileum and decreased AP affinity (p < 0.05) in the large intestine. In the third approach, the porcine IAP isoform-X1 (IAPX1) gene was overexpressed in the prokaryotic ClearColiBL21 (DE3) cell and the recombinant porcine IAPX1 was associated with reduced (p < 0.05) enzyme affinity and maximal enzyme activity. Therefore, levels of glycosylation can modulate plasticity of weaned porcine gut AP functionality towards maintaining gut microbiome and the whole-body physiological status.
Collapse
Affiliation(s)
- Xindi Yin
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Weijun Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Canadian Food Inspection Agency (CFIA)-Ontario Operation, Guelph, ON N1G 4S9, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ming Z. Fan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- One Health Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
3
|
Vötterl JC, Lerch F, Schwartz-Zimmermann HE, Sassu EL, Schwarz L, Renzhammer R, Bünger M, Koger S, Sharma S, Sener-Aydemir A, Quijada NM, Selberherr E, Berthiller F, Metzler-Zebeli BU. Plant-oriented microbiome inoculum modulates age-related maturation of gut-mucosal expression of innate immune and barrier function genes in suckling and weaned piglets. J Anim Sci 2023; 101:skad165. [PMID: 37217284 PMCID: PMC10259255 DOI: 10.1093/jas/skad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
In the immediate time after weaning, piglets often show symptoms of gut inflammation. The change to a plant-based diet, lack of sow milk, and the resulting novel gut microbiome and metabolite profile in digesta may be causative factors for the observed inflammation. We used the intestinal loop perfusion assay (ILPA) to investigate jejunal and colonic expression of genes for antimicrobial secretion, oxidative stress, barrier function, and inflammatory signaling in suckling and weaned piglets when exposed to "plant-oriented" microbiome (POM) representing postweaning digesta with gut-site specific microbial and metabolite composition. Two serial ILPA were performed in two replicate batches, with 16 piglets preweaning (days 24 to 27) and 16 piglets postweaning (days 38 to 41). Two jejunal and colonic loops were perfused with Krebs-Henseleit buffer (control) or with the respective POM for 2 h. Afterward, RNA was isolated from the loop tissue to determine the relative gene expression. Age-related effects in jejunum included higher expression of genes for antimicrobial secretions and barrier function as well as reduced expression of pattern-recognition receptors post- compared to preweaning (P < 0.05). Age-related effects in the colon comprised downregulation of the expression of pattern-recognition receptors post- compared to preweaning (P < 0.05). Likewise, age reduced the colonic expression of genes encoding for cytokines, antimicrobial secretions, antioxidant enzymes, and tight-junction proteins post- compared to preweaning. Effect of POM in the jejunum comprised an increased the expression of toll-like receptors compared to the control (P < 0.05), demonstrating a specific response to microbial antigens. Similarly, POM administration upregulated the jejunal expression of antioxidant enzymes (P < 0.05). The POM perfusion strongly upregulated the colonic expression of cytokines and altered the expression of barrier function genes, fatty acid receptors and transporters, and antimicrobial secretions (P < 0.05). In conclusion, results indicated that POM signaled via altering the expression of pattern-recognition receptors in the jejunum, which in turn activated the secretory defense and decreased mucosal permeability. In the colon, POM may have acted pro-inflammatory via upregulated cytokine expression. Results are valuable for the formulation of transition feeds for the immediate time after weaning to maintain mucosal immune tolerance towards the novel digesta composition.
Collapse
Affiliation(s)
- Julia C Vötterl
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Frederike Lerch
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Rene Renzhammer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Moritz Bünger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Simone Koger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Narciso M Quijada
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, 3430 Tulln an der Donau, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria
| | - Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
4
|
Chenzhe G, Hui M, Dong N, Koko MYF. Extraction, purification, and in vitro biological activities of intestinal alkaline phosphatase from pig intestine mucous waste. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gao Chenzhe
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition Northeast Agricultural University Harbin P. R. China
- College of Food Northeast Agricultural University Harbin P. R. China
| | - Mizhou Hui
- College of Food Northeast Agricultural University Harbin P. R. China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition Northeast Agricultural University Harbin P. R. China
| | | |
Collapse
|
5
|
Escobar J, Dobbs M, Ellenberger C, Parker A, Latorre JD, Gabor L. Oral supplementation of alkaline phosphatase in poultry and swine. Transl Anim Sci 2022; 6:txac079. [PMID: 35795069 PMCID: PMC9249143 DOI: 10.1093/tas/txac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of intestinal alkaline phosphatase (IAP) in maintaining gut health and intestinal homeostasis is well established. The objective of this study was to investigate the tolerance of poultry and swine to dietary supplementation of a novel microbial-derived alkaline phosphatase (AP; E.C. 3.1.3.1 produced by Paenibacillus lentus strain CMG3709). Studies were conducted on day-old Ross 308 chicken (n = 1,000; Study 1) and weaned piglets (n = 180; Study 2) for a duration of 42 d; and consisted of four treatment groups (TG) based on the concentration of microbial-derived AP supplemented in their diet at 0; 12,000; 20,000; and 200,000 U/kg of feed. Parameters such as animal survival, hematology, coagulation, and biochemical indices were assessed at the end of the study. The effect of microbial AP on nutrient absorption through skin pigmentation and intestinal permeability were also investigated in broilers (n = 600; Study 3). In poultry (Study 1), there were no statistically significant differences between control and TG for any of the hematological and biochemical parameters, except for a marginal increase (P < 0.05) in serum phosphorus at the highest dose. This variation was not dose-dependent, was well within the reference range, and was not associated with any clinical correlates. In swine (Study 2), hematological parameters such as leukocyte, basophil, and lymphocyte counts were lower (P < 0.05) for the two highest doses but were traced back to individual variations within the group. The biochemical indices in piglets showed no significant differences between control and supplemental groups except for glucose (P = 0.0005), which showed a high effect (P = 0.008) of the random blood collection order. Nonetheless, glucose was within the normal reference range, and were not related to in-feed supplementation of AP as they had no biological significance. The survival rate in all three studies was over 98%. Dietary supplementation of microbial-derived AP up to 16.7 times the intended use (12,000 U/kg feed) level had no negative effects in both poultry and swine. In-feed supplementation of microbial-derived AP for 28 d improved intestinal pigment absorption (P < 0.0001) and reduced intestinal paracellular permeability (P = 0.0001) in broilers (Study 3). Based on these results, it can be concluded that oral supplementation of microbial-derived AP is safe for poultry and swine and effective at improving gut health in poultry.
Collapse
Affiliation(s)
| | - Merilyn Dobbs
- Elanco Australasia Pty. Ltd., Kemps Creek, NSW 2178, Australia
| | | | - Alysia Parker
- Elanco Australasia Pty. Ltd., Kemps Creek, NSW 2178, Australia
| | | | - Leslie Gabor
- Elanco Australasia Pty. Ltd., Kemps Creek, NSW 2178, Australia
| |
Collapse
|
6
|
Metzler-Zebeli BU. The Role of Dietary and Microbial Fatty Acids in the Control of Inflammation in Neonatal Piglets. Animals (Basel) 2021; 11:ani11102781. [PMID: 34679802 PMCID: PMC8532928 DOI: 10.3390/ani11102781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The maturation of the gut is a specific and very dynamic process in new-born piglets. Consequently, piglet’s gut is very susceptible to disturbances, especially in stressful periods of life, such as weaning, when the gut lining often becomes inflamed and leaky. Dietary fatty acids (FA) do not only serve as source of energy and essential FA, but they are important precursors for bioactive lipid mediators, which modulate inflammatory signalling in the body. The current review summarizes results on dietary sources of FA for piglets, the signalling cascades, bioactivities, the necessity to consider the autoxidation potential of polyunsaturated FA and the area of microbially produced long-chain FA. That said, porcine milk is high in fat, whereby the milk FA composition partly depends on the dietary FA composition of the sow. Therefore, manipulation of the sow diet is an efficient tool to increase the piglet’s intake of specific FA, e.g., n-3 polyunsaturated FA which show anti-inflammatory activity and may support intestinal integrity and functioning in the growing animal. Abstract Excessive inflammation and a reduced gut mucosal barrier are major causes for gut dysfunction in piglets. The fatty acid (FA) composition of the membrane lipids is crucial for mediating inflammatory signalling and is largely determined by their dietary intake. Porcine colostrum and milk are the major sources of fat in neonatal piglets. Both are rich in fat, demonstrating the dependence of the young metabolism from fat and providing the young organism with the optimum profile of lipids for growth and development. The manipulation of sow’s dietary polyunsaturated FA (PUFA) intake has been shown to be an efficient strategy to increase the transfer of specific FAs to the piglet for incorporation in enteric tissues and cell membranes. n-3 PUFAs, especially seems to be beneficial for the immune response and gut epithelial barrier function, supporting the piglet’s enteric defences in situations of increased stress such as weaning. Little is known about microbial lipid mediators and their role in gut barrier function and inhibition of inflammation in neonatal piglets. The present review summarizes the current knowledge of lipid nutrition in new-born piglets, comparing the FA ingestion from milk and plant-based lipid sources and touching the areas of host lipid signalling, inflammatory signalling and microbially derived FAs.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
7
|
Zhuang Y, Huang H, Liu S, Liu F, Tu Q, Yin Y, He S. Resveratrol Improves Growth Performance, Intestinal Morphology, and Microbiota Composition and Metabolism in Mice. Front Microbiol 2021; 12:726878. [PMID: 34539617 PMCID: PMC8446547 DOI: 10.3389/fmicb.2021.726878] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background Resveratrol (RSV) plays a vital role in alleviating various stresses and improving intestinal health. The current study was conducted to explore whether RSV alleviates weaning stress through improving gut health in a weaning mouse model. Forty 21-day-old weaned mice were randomly assigned to a control group without RSV treatment and three treatment groups with 10, 20, and 50 mg/kg RSV for 28 days. Results The results showed that RSV at a dose of 20 mg/kg improved total body weight, intestinal morphology (villus length and the ratio of villus length to crypt depth), and the levels of intestinal barrier proteins (claudin-1 and occludin), but had little effect on the food intake, crypt depth, and serum free amino acids of mice. Compared with the control group, mice supplemented with RSV had decreased mRNA expression of genes related to inflammatory cytokines (IL-6 and IL-1β), but increased mRNA expression of genes related to host defense peptides (Defa3, Defa5, Defa20, and Lyz) and short-chain fatty acids (SCFAs) production (propionic acid, isobutyric acid, butyric acid, and isovaleric acid). In addition, 16S rRNA sequencing results showed that RSV supplementation increased the richness indices of intestinal microbiota (Chao, ACE) and shaped the composition of intestinal microbiota (e.g., increased β-diversity of intestinal microbiota community). Meanwhile, RSV supplementation increased genes of Butyricicoccus, Ruminococcus_1, and Roseburia, which are producers of SCFAs. Furthermore, RSV supplementation significantly influenced the metabolism of intestinal microbiota, namely, amino acids metabolism, lipid metabolism, and defense mechanisms. Conclusion RSV can improve growth performance and intestinal morphology in weaning mice, possibly through improving gut immune response and microbiota function.
Collapse
Affiliation(s)
- Yu Zhuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China.,Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huijun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Shuang Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Feng Liu
- Yucheng Baolikang Biological Feed Co., Ltd., Dezhou, China
| | - Qiang Tu
- Yucheng Baolikang Biological Feed Co., Ltd., Dezhou, China
| | - Yulong Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Shanping He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Ma Y, Sun Z, Zeng Y, Hu P, Sun W, Liu Y, Hu H, Rao Z, Tang Z. Isolation, Identification and Function of Pichia anomala AR 2016 and Its Effects on the Growth and Health of Weaned Pigs. Animals (Basel) 2021; 11:ani11041179. [PMID: 33924225 PMCID: PMC8074749 DOI: 10.3390/ani11041179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
This study isolates and identifies Pichia anomala (P. anomala) AR2016, and studies its effect on the growth and health of weaned pigs. A P. anomala strain from solid wine koji is isolated and identified using 26S rDNA analysis, and its culture conditions are optimized. Heat tolerance, bile salt tolerance, artificial gastric, and intestinal juice tolerance are evaluated. In our methodology, thirty 28 d Large White × Landrace × Rongchang weaned pigs were randomly divided into three groups with 10 barrows in each, and fed a maize-soybean meal diet and orally administered 0.85% saline (CK), 1 mL 1 × 109 cfu/mL Candida utilis (C. utilis), and 1 mL 1 × 109 cfu/mL P. anomala once daily for 28 days. A P. anomala strain was identified and named P. anomala AR2016. P. anomala AR2016 grew best in yeast extract peptone dextrose medium with pH 5.0 at 28 °C, 180 r/min and could tolerate 45 °C for 0.5 h, 0.2% pig bile salts, simulated gastric fluid, and 1.0% simulated intestinal fluid. Our results show that compared with the CK group, orally administered P. anomala AR2016 increases average daily gain, the ileal villus height, the ileal mucosal concentrations of occludin and zonula occluens-1, the serum glucose and total protein concentration, total superoxide dismutase, glutathione peroxidase, and total antioxidative capacity activity, the trypsin and lipase activity in jejunal and ileal contents, the jejunal and ileal mucosa mRNA levels of ALP, TNF-α, and TLR-2, and the relative abundance of Bacteroidetes, Actinobacteria, Succinivibrionaceae, Lachnospiraceae, and Prevotellaceae (p < 0.05). Compared with the CK group, oral administration of P. anomala AR2016 decreased the incidence of diarrhea, aspartate aminotransferase activity, alanine amino-transferase-activity, malondialdehyde, D-lactic acid and endotoxin content in serum, the mRNA level of aminopeptidase N of ileum mucosa, and the relative abundance of Proteobacteria, Clostridiaceae, Campylobacteraceae, Vibrionaceae, Bacillus, and Pseudon (p < 0.05). Collectively, the study indicates that P. anomala AR2016 can tolerate high acidity and high bile salts, and has high survivability in the artificial gastric intestinal juice environment. Oral administration of P. anomala AR2016 improves the growth performance, reduces the incidence of diarrhea, enhances intestinal barrier function, and improves microflora in weaned pigs.
Collapse
Affiliation(s)
- Yajun Ma
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Animal Southwest University, Chongqing 400715, China; (Y.M.); (Z.S.); (P.H.); (W.S.); (H.H.); (Z.R.)
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Animal Southwest University, Chongqing 400715, China; (Y.M.); (Z.S.); (P.H.); (W.S.); (H.H.); (Z.R.)
| | - Yan Zeng
- Fermentation Engineering Department, Hunan Institute of Microbiology, Changsha 410009, China; (Y.Z.); (Y.L.)
| | - Ping Hu
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Animal Southwest University, Chongqing 400715, China; (Y.M.); (Z.S.); (P.H.); (W.S.); (H.H.); (Z.R.)
| | - Weizhong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Animal Southwest University, Chongqing 400715, China; (Y.M.); (Z.S.); (P.H.); (W.S.); (H.H.); (Z.R.)
| | - Yubo Liu
- Fermentation Engineering Department, Hunan Institute of Microbiology, Changsha 410009, China; (Y.Z.); (Y.L.)
| | - Hong Hu
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Animal Southwest University, Chongqing 400715, China; (Y.M.); (Z.S.); (P.H.); (W.S.); (H.H.); (Z.R.)
| | - Zebin Rao
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Animal Southwest University, Chongqing 400715, China; (Y.M.); (Z.S.); (P.H.); (W.S.); (H.H.); (Z.R.)
| | - Zhiru Tang
- Fermentation Engineering Department, Hunan Institute of Microbiology, Changsha 410009, China; (Y.Z.); (Y.L.)
- Correspondence: ; Tel.: +86-139-9619-2900
| |
Collapse
|
9
|
Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Influence of exogenous phytase supplementation on phytate degradation, plasma inositol, alkaline phosphatase, and glucose concentrations of broilers at 28 days of age. Poult Sci 2020; 100:224-234. [PMID: 33357685 PMCID: PMC7772694 DOI: 10.1016/j.psj.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022] Open
Abstract
Inositol is the final product of phytate degradation, which has the potential to serve as an indicator of phytase efficacy. An experiment was conducted to evaluate effects of supplementing broiler diets with phytase on phytate degradation and plasma inositol concentrations at 28 d of age. Twenty-four Ross × Ross 708 male chicks were placed in battery cages (4 birds per cage) from 1 to 21 d of age and individually from 22 to 28 d of age. At 27 d of age, a catheter was placed in the brachial vein of broilers to avoid repeated puncture of the vein during blood collection. At 28 d of age, broilers received 1 of 3 experimental diets formulated to contain 0, 400, or 1,200 phytase units (FTU)/kg, respectively, in diet 1, 2, and 3. Blood was collected 1 h before feeding experimental diets and from 20 to 240 min after feeding experimental diets at 20-min intervals with a final blood collection at 480 min to determine plasma inositol concentrations. Inositol phosphate (IP) ester degradation was determined in gizzard contents and ileal digesta. Broilers provided the 1,200 FTU/kg phytase diet had 60% less (P < 0.01) IP6 concentration in gizzard content (1,264 vs. 4,176 nmol/g) and ileal digesta (13,472 vs. 33,244 nmol/g) than birds fed the 400 FTU/kg diet. Adding phytase at 1,200 FTU/kg increased (P < 0.01) inositol concentrations in gizzard content and ileal digesta of broilers by 2.5 (2,703 vs. 1,071 nmol/g) and 3.5 (16,485 vs. 4,667 nmol/g) fold, respectively, compared with adding 400 FTU/kg. Plasma inositol concentration of broilers was not different (P = 0.94) among the dietary treatments at each collection time. Inositol liberation in the digesta of broilers fed diets with 1,200 FTU/kg phytase did not translate to increased plasma inositol concentrations, which warrants further investigation.
Collapse
|
11
|
Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br J Nutr 2020; 125:494-507. [PMID: 32693847 PMCID: PMC7885174 DOI: 10.1017/s0007114520002755] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.
Collapse
|
12
|
Holodova M, Cobanova K, Sefcikova Z, Barszcz M, Tuśnio A, Taciak M, Gresakova L. Dietary Zinc and Fibre Source can Influence the Mineral and Antioxidant Status of Piglets. Animals (Basel) 2019; 9:E497. [PMID: 31362348 PMCID: PMC6720890 DOI: 10.3390/ani9080497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023] Open
Abstract
The study investigated the effect of dietary zinc glycine chelate and potato fibre on the absorption and utilisation of Zn, Cu, Fe, and Mn; the activity of Zn-containing enzymes (superoxide dismutase, SOD; alkaline phosphatase, ALP); and zinc transporter concentrations (metalothionein1, MT1; zinc transporter1, ZnT1) in tissues, with a special emphasis on the small intestine. Twenty-four barrows (Danbred × Duroc) were randomly allotted to four diets (supplemented with 10 g/kg of crude fibre and 120 mg Zn/kg) that consisted of cellulose and either zinc sulphate (C) or zinc glycinate (ZnGly), or contained potato fibre supplemented with ZnSO4 (PF) or ZnGly (PF + ZnGly). Feeding PF can influence the Zn absorption in the small intestine due to reduced zinc transporters MT1 and ZnT1 in the jejunum. The activity of antioxidant enzyme SOD and liver ZnT1, and duodenal iron concentrations were increased in the PF treatments. Dietary ZnGly did not significantly influence the Zn distribution, but it may alter the absorption of Fe and Mn. Given the elevated content of thiol groups and the Zn/Cu ratio in plasma, as well as the altered SOD activity and MT content in the tissues, we can conclude that feeding PF and ZnGly can influence the mineral and antioxidant status of growing piglets. However, further research is needed in order to elucidate the effect of both dietary sources on the transport systems of other minerals in enterocytes.
Collapse
Affiliation(s)
- Monika Holodova
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovakia
| | - Klaudia Cobanova
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovakia
| | - Zuzana Sefcikova
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovakia
| | - Marcin Barszcz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Anna Tuśnio
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Marcin Taciak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Lubomira Gresakova
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovakia.
| |
Collapse
|
13
|
Hu S, Cao X, Wu Y, Mei X, Xu H, Wang Y, Zhang X, Gong L, Li W. Effects of Probiotic Bacillus as an Alternative of Antibiotics on Digestive Enzymes Activity and Intestinal Integrity of Piglets. Front Microbiol 2018; 9:2427. [PMID: 30405544 PMCID: PMC6204369 DOI: 10.3389/fmicb.2018.02427] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
The previous study in our team found that supplementation of probiotic Bacillus amyloliquefaciens (Ba) instead of antibiotics promote growth performance of piglets. Hence, the present study was carried out to further demonstrate the effect of Ba replacement of antibiotics on digestive and absorption enzyme activity and intestinal microbiota population of piglets. A total of 90 piglets were selected and divided into three groups: G1 group was fed with basal diet supplemented with 150 mg/Kg aureomycin, G2 group was fed with 1 × 108 cfu/Kg Ba and half dose of aureomycin, G3 group was used the diet with 2 × 108cfu/Kg Ba replaced aureomycin. Each treatment had three replications of 10 pigs per pen. Results indicated that Ba replacement significantly increased the activities of amylase, disaccharides and Na+/K+-ATPase. And chymotrypsin activity in different section of intestine was dramatically enhanced in half replacement of aureomycin with Ba. Moreover, Ba replacement maintained the intestinal integrity with the significantly decreased activity of DAO compared with aureomycin group. Besides, supplementation with Ba increased the β-diversity of intestinal microbiota. Taken together, the current study indicated that diet supplementation with Ba instead of aureomycin increased the growth performance of piglets by improving the digestive and absorb enzyme activities, enhancing the intestinal integrity and regulating the population of intestinal micrbiota.
Collapse
Affiliation(s)
- Shenglan Hu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuefang Cao
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Mei
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhang
- Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, China National Bamboo Research Center, Hangzhou, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Hassan YI, Lahaye L, Gong MM, Peng J, Gong J, Liu S, Gay CG, Yang C. Innovative drugs, chemicals, and enzymes within the animal production chain. Vet Res 2018; 49:71. [PMID: 30060767 PMCID: PMC6066918 DOI: 10.1186/s13567-018-0559-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed the cornerstone of modern medicine for treating bacterial infections. The empirical benefits of using antibiotics to address animal health issues in animal agriculture (using therapeutic doses) and increasing the overall productivity of animals (using sub-therapeutic doses) are well established. The use of antibiotics to enhance profitability margins in the animal production industry is still practiced worldwide. Although many technical and economic reasons gave rise to these practices, the continued emergence of antimicrobial resistant bacteria is furthering the need to reduce the use of medically important antibiotics. This will require improving on-farm management and biosecurity practices, and the development of effective antibiotic alternatives that will reduce the dependence on antibiotics within the animal industry in the foreseeable future. A number of approaches are being closely scrutinized and optimized to achieve this goal, including the development of promising antibiotic alternatives to control bacterial virulence through quorum-sensing disruption, the use of synthetic polymers and nanoparticles, the exploitation of recombinant enzymes/proteins (such as glucose oxidases, alkaline phosphatases and proteases), and the use of phytochemicals. This review explores the most recent approaches within this context and provides a summary of practical mitigation strategies for the extensive use of antibiotics within the animal production chain in addition to several future challenges that need to be addressed.
Collapse
Affiliation(s)
- Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | | | - Max M. Gong
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Jian Peng
- College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB Canada
| | - Cyril G. Gay
- Office of National Programs, Animal Production and Protection, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
15
|
Gilani S, Howarth GS, Nattrass G, Kitessa SM, Barekatain R, Forder REA, Tran CD, Hughes RJ. Gene expression and morphological changes in the intestinal mucosa associated with increased permeability induced by short-term fasting in chickens. J Anim Physiol Anim Nutr (Berl) 2017; 102:e653-e661. [PMID: 29034530 DOI: 10.1111/jpn.12808] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
Short-term fasting for 4.5 and 9 hr has been demonstrated to increase intestinal permeability (IP) in chickens. This study aimed to investigate the effects of 0, 4.5, 9 and 19.5 hr fasting on intestinal gene expression and villus-crypt architecture of enterocytes in jejunal and ileal samples. On day 38, Ross-308 male birds were fasted according to their group and then euthanised. Two separate intestinal sections (each 2 cm long, jejunum and ileum) were collected. One section was utilised for villus height and crypt depth measurements. The second section was snap-frozen in liquid nitrogen for quantitative polymerase chain reaction (qPCR) analysis of tight junction proteins (TJP) including claudin-1, claudin-3, occludin, zonula occludens (ZO-1, ZO-2), junctional adhesion molecules (JAM) and E-cadherin. Additionally genes involved in enterocyte protection including glucagon-like peptide (GLP-2), heat-shock protein (HSP-70), intestinal alkaline phosphatase (IAP), mammalian target of rapamycin (mTOR), toll-like receptors (TLR-4), mucin (MUC-2), cluster differentiation (CD-36) and fatty acid-binding protein (FABP-6) were also analysed. Normally distributed data were analysed using one-way analysis of variance ANOVA. Other data were analysed by non-parametric one-way ANOVA. Villus height and crypt depth were increased (p < .05) only in the ileum after fasting for 4.5 and 9 hr compared with non-fasting group. mRNA expression of claudin-3 was significantly reduced in the ileum of birds fasted for 9 and 19.5 hr, suggesting a role in IP modulation. However, all other TJP genes examined were not statistically different from control. Nevertheless, ileal FABP-6 of all fasted groups was significantly reduced, which could possibly be due to reduced bile acid production during fasting.
Collapse
Affiliation(s)
- S Gilani
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia.,Poultry CRC, University of New England, Armidale, NSW, Australia
| | - G S Howarth
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - G Nattrass
- South Australian Research and Development Institute, University of Adelaide, Roseworthy, SA, Australia
| | - S M Kitessa
- South Australian Research and Development Institute, University of Adelaide, Roseworthy, SA, Australia
| | - R Barekatain
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia.,South Australian Research and Development Institute, University of Adelaide, Roseworthy, SA, Australia
| | - R E A Forder
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - C D Tran
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA, Australia.,Faculty of Health Sciences, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - R J Hughes
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia.,South Australian Research and Development Institute, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
16
|
Gao T, Zhao MM, Li YJ, Zhang L, Li JL, Yu LL, Gao F, Zhou GH. Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. J Anim Physiol Anim Nutr (Berl) 2017; 102:e166-e175. [DOI: 10.1111/jpn.12724] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. Gao
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - M. M. Zhao
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - Y. J. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. Zhang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - J. L. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. L. Yu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - F. Gao
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - G. H. Zhou
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
17
|
Lallès JP. Microbiota-host interplay at the gut epithelial level, health and nutrition. J Anim Sci Biotechnol 2016; 7:66. [PMID: 27833747 PMCID: PMC5101664 DOI: 10.1186/s40104-016-0123-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on two defense systems: intestinal alkaline phosphatase (IAP) and inducible heat shock proteins (iHSPs). Both IAP and iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs), metabolites (e.g. n-butyrate) or secreted signal molecules (e.g., toxins, various peptides, polyphosphate). IAP is produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including macronutrients (protein and amino acids, especially L-glutamine, fat, fiber), and specific minerals (e.g. calcium) and vitamins (e.g. vitamins K1 and K2). Some food components (e.g. lectins, soybean proteins, various polyphenols) may inhibit or disturb these systems. The general cellular and molecular mechanisms involved in the microbiota-host epithelial crosstalk and subsequent gut protection through IAP and iHSPs are reviewed along with their nutritional modulation. Special emphasis is also given to the pig, an economically important species and valuable biomedical model.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Division of Human Nutrition Division, INRA Clermont-Ferrand, France ; Human Nutrition Research Center - West, Nantes, France ; Present Address: INRA - SDAR, Domaine de la Motte, B.P. 35327, F-35653 Le Rheu Cedex, France
| |
Collapse
|