1
|
Xie Z, Weng L, He J, Feng X, Xu X, Ma Y, Bai P, Kong Q. PNNGS, a multi-convolutional parallel neural network for genomic selection. FRONTIERS IN PLANT SCIENCE 2024; 15:1410596. [PMID: 39290743 PMCID: PMC11405342 DOI: 10.3389/fpls.2024.1410596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Genomic selection (GS) can accomplish breeding faster than phenotypic selection. Improving prediction accuracy is the key to promoting GS. To improve the GS prediction accuracy and stability, we introduce parallel convolution to deep learning for GS and call it a parallel neural network for genomic selection (PNNGS). In PNNGS, information passes through convolutions of different kernel sizes in parallel. The convolutions in each branch are connected with residuals. Four different Lp loss functions train PNNGS. Through experiments, the optimal number of parallel paths for rice, sunflower, wheat, and maize is found to be 4, 6, 4, and 3, respectively. Phenotype prediction is performed on 24 cases through ridge-regression best linear unbiased prediction (RRBLUP), random forests (RF), support vector regression (SVR), deep neural network genomic prediction (DNNGP), and PNNGS. Serial DNNGP and parallel PNNGS outperform the other three algorithms. On average, PNNGS prediction accuracy is 0.031 larger than DNNGP prediction accuracy, indicating that parallelism can improve the GS model. Plants are divided into clusters through principal component analysis (PCA) and K-means clustering algorithms. The sample sizes of different clusters vary greatly, indicating that this is unbalanced data. Through stratified sampling, the prediction stability and accuracy of PNNGS are improved. When the training samples are reduced in small clusters, the prediction accuracy of PNNGS decreases significantly. Increasing the sample size of small clusters is critical to improving the prediction accuracy of GS.
Collapse
Affiliation(s)
- Zhengchao Xie
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Lin Weng
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Jingjing He
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaogang Xu
- School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou, China
| | - Yinxing Ma
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Panpan Bai
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| | - Qihui Kong
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, China
| |
Collapse
|
2
|
Haque MA, Iqbal A, Alam MZ, Lee YM, Ha JJ, Kim JJ. Estimation of genetic correlations and genomic prediction accuracy for reproductive and carcass traits in Hanwoo cows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:682-701. [PMID: 39165742 PMCID: PMC11331368 DOI: 10.5187/jast.2024.e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2024]
Abstract
This study estimated the heritabilities (h2) and genetic and phenotypic correlations between reproductive traits, including calving interval (CI), age at first calving (AFC), gestation length (GL), number of artificial inseminations per conception (NAIPC), and carcass traits, including carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS) in Korean Hanwoo cows. In addition, the accuracy of genomic predictions of breeding values was evaluated by applying the genomic best linear unbiased prediction (GBLUP) and the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass traits were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The genetic parameters were estimated using a multi-trait animal model using the MTG2 program. The estimated h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 0.45, respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged from 0.51 to 0.74, while the WGBLUP accuracy estimates for the traits under study ranged from 0.51 to 0.79. Strong and favorable genetic correlations were observed between GL and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC and CWT (0.48), CI and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS (0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study identified low to moderate positive genetic correlations between reproductive and CWT traits, suggesting that a heavier body weight may lead to a longer CI, AFC, GL, and NAIPC. The moderately positive genetic correlation between CWT and AFC, and NAIPC, with a phenotypic correlation of nearly zero, suggesting that the genotype-environment interactions are more likely to be responsible for the phenotypic manifestation of these traits. As a result, the inclusion of these traits by breeders as selection criteria may present a good opportunity for developing a selection index to increase the response to the selection and identification of candidate animals, which can result in significantly increased profitability of production systems.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| | - Asif Iqbal
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| | | | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| | - Jae-Jung Ha
- Gyeongbuk Livestock Research
Institute, Yeongju 36052, Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| |
Collapse
|
3
|
Kim EH, Kang HC, Myung CH, Kim JY, Sun DW, Lee DH, Lee SH, Lim HT. Comparison on genomic prediction using pedigree BLUP and single step GBLUP through the Hanwoo full-sib family. Anim Biosci 2023; 36:1327-1335. [PMID: 37170517 PMCID: PMC10472147 DOI: 10.5713/ab.22.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. METHODS The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. RESULTS For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. CONCLUSION Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.
Collapse
Affiliation(s)
- Eun-Ho Kim
- Department of Animal Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Ho-Chan Kang
- Department of Animal Science and Biotechnology, Gyeongsang National University, Jinju 52828,
Korea
| | - Cheol-Hyun Myung
- Department of Animal Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Ji-Yeong Kim
- Department of Animal Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Du-Won Sun
- Gyeongnam Animal Science and Technology, Gyeongsang National University, Jinju 52828,
Korea
| | - Doo-Ho Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Seung-Hwan Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hyun-Tae Lim
- Department of Animal Science, Gyeongsang National University, Jinju 52828,
Korea
- Department of Animal Science and Biotechnology, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
4
|
Haque MA, Iqbal A, Bae H, Lee SE, Park S, Lee YM, Kim JJ. Assessment of genomic breeding values and their accuracies for carcass traits in Jeju Black cattle using whole-genome SNP chip panels. J Anim Breed Genet 2023; 140:519-531. [PMID: 37102238 DOI: 10.1111/jbg.12776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The objective of the present study was to evaluate the breeding value and accuracy of genomic estimated breeding values (GEBVs) of carcass traits in Jeju Black cattle (JBC) using Hanwoo steers and JBC as a reference population using the single-trait animal model. Our research included genotype and phenotype information on 19,154 Hanwoo steers with 1097 JBC acting as the reference population. Likewise, the test population consisted of 418 genotyped JBC individuals with no phenotypic records for those carcass traits. For estimating the accuracy of GEBV, we divided the entire population into three groups. Hanwoo and JBC make up the first group; Hanwoo and JBC, who has both the genotype and phenotypic records, are referred to as the reference (training) population, and JBC, who lacks phenotypic information is referred to as the test (validation) population. The second group consists of the JBC (without phenotype) as the test population and Hanwoo as a reference population with phenotype and genotypic data. The only JBCs in the third group are those who have genotypic and phenotypic data on them as a reference population but no phenotypic data on them as a test population. The single-trait animal model was used in all three groups for statistical purposes. The reference populations estimated heritabilities for carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS) as 0.30, 0.26, 0.26, and 0.34 for the Hanwoo steer and 0.42, 0.27, 0.26, and 0.48 for JBC. The average accuracy for carcass traits in Group 1 was 0.80 for the Hanwoo and JBC reference population compared with 0.73 for the JBC test population. Although the average accuracy for carcass traits in Group 2 was 0.80, it was 0.80 for the Hanwoo reference population and only 0.56 for the JBC test population. The average accuracy for the JBC reference and test populations was 0.68 and 0.50, respectively, when they were included in the accuracy comparison without the Hanwoo reference population. Groups 1 and 2 used Hanwoo as reference population, which led to a better average accuracy; however, Group 3 only used the JBC reference and test population, which led to a lower average accuracy. This might be due to the fact that Group 3 used a smaller reference size than the group that came before it and that the genetic makeup of the Hanwoo and JBC breeds differed. The GEBV accuracy for MS was higher than that of other traits across all three analysis groups, followed by CWT, EMA, and BF, which may be partially explained by the MS traits' higher heritability. This study suggests that in order to achieve more accuracy, a large reference population particular to a breed should be established. Therefore, to increase the accuracy of GEBV prediction and the genetic benefit from genomic selection in JBC, individual reference breeds, and large populations are required.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Asif Iqbal
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Haechang Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Seung Eun Lee
- Department of Biomedical Informatics, Jeju National University, Jeju, Korea
| | - Sepil Park
- Department of Biomedical Informatics, Jeju National University, Jeju, Korea
| | - Yun Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| |
Collapse
|
5
|
Exploring and Identifying Candidate Genes and Genomic Regions Related to Economically Important Traits in Hanwoo Cattle. Curr Issues Mol Biol 2022; 44:6075-6092. [PMID: 36547075 PMCID: PMC9777506 DOI: 10.3390/cimb44120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The purpose of the current review was to explore and summarize different studies concerning the detection and characterization of candidate genes and genomic regions associated with economically important traits in Hanwoo beef cattle. Hanwoo cattle, the indigenous premium beef cattle of Korea, were introduced for their marbled fat, tenderness, characteristic flavor, and juiciness. To date, there has been a strong emphasis on the genetic improvement of meat quality and yields, such as backfat thickness (BFT), marbling score (MS), carcass weight (CW), eye muscle area (EMA), and yearling weight (YW), as major selection criteria in Hanwoo breeding programs. Hence, an understanding of the genetics controlling these traits along with precise knowledge of the biological mechanisms underlying the traits would increase the ability of the industry to improve cattle to better meet consumer demands. With the development of high-throughput genotyping, genomewide association studies (GWAS) have allowed the detection of chromosomal regions and candidate genes linked to phenotypes of interest. This is an effective and useful tool for accelerating the efficiency of animal breeding and selection. The GWAS results obtained from the literature review showed that most positional genes associated with carcass and growth traits in Hanwoo are located on chromosomes 6 and 14, among which LCORL, NCAPG, PPARGC1A, ABCG2, FAM110B, FABP4, DGAT1, PLAG1, and TOX are well known. In conclusion, this review study attempted to provide comprehensive information on the identified candidate genes associated with the studied traits and genes enriched in the functional terms and pathways that could serve as a valuable resource for future research in Hanwoo breeding programs.
Collapse
|
6
|
Kim EH, Kang HC, Sun DW, Myung CH, Kim JY, Lee DH, Lee SH, Lim HT. Estimation of breeding value and accuracy using pedigree and genotype of Hanwoo cows (Korean cattle). J Anim Breed Genet 2021; 139:281-291. [PMID: 34902178 DOI: 10.1111/jbg.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
The genetic improvement of Hanwoo is dependent on the estimated breeding value (EBV) of pedigree-based Korean proven bull's number, and the genetic evaluation for cows is difficult due to insufficient pedigree and test records. Genomic selection involves utilizing the individual's genotype to estimate the breeding value (BV) and is determined to be an appropriate evaluation method for cows who lack test information. This study used pedigree and genotype to estimate and analyse BV and accuracy of Hanwoo cows in the Gyeongnam area using pedigree best linear unbiased prediction (PBLUP) and genomic best linear unbiased prediction (GBLUP). The test group acquired pedigree and genotype of 919 Hanwoo cows in the Gyeongnam area. The traits used for analysis were carcass weight (CWT), eye muscle areas (EMA), backfat thickness (BFT) and marbling score (MS). PBLUP used Reference group 1 containing the pedigree and phenotype of 919 Hanwoo cows and 545,483 heads to construct the numeric relationship matrix and estimated the EBV and accuracy. GBLUP used Reference group 2 containing the genotype and phenotype of 919 Hanwoo cows and 17,226 heads to construct the genomic relationship matrix and estimated the genomic EBV (GEBV) and accuracy. In the order of CWT, EMA, BFT and MS, the accuracy of PBLUP was 0.488, 0.480, 0.482 and 0.486 while the accuracy of GBLUP was higher with 0.779, 0.758, 0.766 and 0.791. And for 104 cows without relationship coefficient on pedigree to the reference group, the accuracy as PBLUP was estimated to be 0, but for GBLUP, it was possible to estimate the accuracy for all individuals. If GBLUP is applied to cows raised in general farms, the genetic evaluation can be performed even on animals without pedigree and high-accuracy estimation, enabling selection of excellent cows. Accordingly, by securing the genetic diversity of cows, it is expected to increase the profitability of farms by decreasing the inbreeding rate and increasing efficiency of elite calf production.
Collapse
Affiliation(s)
- Eun-Ho Kim
- Department of Animal Science, Gyeongsang National University, Jinju, Korea
| | - Ho-Chan Kang
- Department of Animal Science and Biotechnology, Gyeongsang National University, Jinju, Korea
| | - Du-Won Sun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea
| | - Cheol-Hyun Myung
- Department of Animal Science, Gyeongsang National University, Jinju, Korea
| | - Ji-Yeong Kim
- Department of Animal Science, Gyeongsang National University, Jinju, Korea
| | - Doo-Ho Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Seung-Hwan Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Hyun-Tae Lim
- Department of Animal Science, Gyeongsang National University, Jinju, Korea.,Department of Animal Science and Biotechnology, Gyeongsang National University, Jinju, Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
7
|
Nguyen DV, Nguyen OC, Malau-Aduli AE. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021; 14:100219. [PMID: 34877434 PMCID: PMC8633366 DOI: 10.1016/j.vas.2021.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The content of intramuscular fat (IMF), that determines marbling levels is considered as one of the vital factors influencing beef sensory quality including tenderness, juiciness, flavour and colour. The IMF formation in cattle commences around six months after conception, and continuously grows throughout the life of the animal. The accumulation of marbling is remarkably affected by genetic, sexual, nutritional and management factors. In this review, the adipogenesis and lipogenesis process regulated by various factors and genes during fetal and growing stages is briefly presented. We also discuss the findings of recent studies on the effects of breed, gene, heritability and gender on the marbling accumulation. Various research reported that feeding during pregnancy, concentrate to roughage ratios and the supplementation or restriction of vitamin A, C, and D are crucial nutritional factors affecting the formation and development of IMF. Castration and early weaning combined with high energy feeding are effective management strategies for improving the accumulation of IMF. Furthermore, age and weight at slaughter are also reviewed because they have significant effects on marbling levels. The combination of several factors could positively affect the improvement of the IMF deposition. Therefore, advanced strategies that simultaneously apply genetic, sexual, nutritional and management factors to achieve desired IMF content without detrimental impacts on feed efficiency in high-marbling beef production are essential.
Collapse
Affiliation(s)
- Don V. Nguyen
- National Institute of Animal Science, Bac Tu Liem, Hanoi 29909, Vietnam
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Oanh C. Nguyen
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Aduli E.O. Malau-Aduli
- Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
8
|
Naserkheil M, Mehrban H, Lee D, Park MN. Evaluation of Genome-Enabled Prediction for Carcass Primal Cut Yields Using Single-Step Genomic Best Linear Unbiased Prediction in Hanwoo Cattle. Genes (Basel) 2021; 12:genes12121886. [PMID: 34946834 PMCID: PMC8701981 DOI: 10.3390/genes12121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
There is a growing interest worldwide in genetically selecting high-value cut carcass weights, which allows for increased profitability in the beef cattle industry. Primal cut yields have been proposed as a potential indicator of cutability and overall carcass merit, and it is worthwhile to assess the prediction accuracies of genomic selection for these traits. This study was performed to compare the prediction accuracy obtained from a conventional pedigree-based BLUP (PBLUP) and a single-step genomic BLUP (ssGBLUP) method for 10 primal cut traits-bottom round, brisket, chuck, flank, rib, shank, sirloin, striploin, tenderloin, and top round-in Hanwoo cattle with the estimators of the linear regression method. The dataset comprised 3467 phenotypic observations for the studied traits and 3745 genotyped individuals with 43,987 single-nucleotide polymorphisms. In the partial dataset, the accuracies ranged from 0.22 to 0.30 and from 0.37 to 0.54 as evaluated using the PBLUP and ssGBLUP models, respectively. The accuracies of PBLUP and ssGBLUP with the whole dataset varied from 0.45 to 0.75 (average 0.62) and from 0.52 to 0.83 (average 0.71), respectively. The results demonstrate that ssGBLUP performed better than PBLUP averaged over the 10 traits, in terms of prediction accuracy, regardless of considering a partial or whole dataset. Moreover, ssGBLUP generally showed less biased prediction and a value of dispersion closer to 1 than PBLUP across the studied traits. Thus, the ssGBLUP seems to be more suitable for improving the accuracy of predictions for primal cut yields, which can be considered a starting point in future genomic evaluation for these traits in Hanwoo breeding practice.
Collapse
Affiliation(s)
- Masoumeh Naserkheil
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan-si 31000, Chungcheongnam-do, Korea;
| | - Hossein Mehrban
- Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran;
| | - Deukmin Lee
- Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si 17579, Gyeonggi-do, Korea
- Correspondence: (D.L.); (M.N.P.); Tel.: +82-31-670-5091 (D.L.); +82-41-580-3355 (M.N.P.)
| | - Mi Na Park
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan-si 31000, Chungcheongnam-do, Korea;
- Correspondence: (D.L.); (M.N.P.); Tel.: +82-31-670-5091 (D.L.); +82-41-580-3355 (M.N.P.)
| |
Collapse
|
9
|
Genetic Analysis of Major Carcass Traits of Korean Hanwoo Males Raised for Thirty Months. Animals (Basel) 2021; 11:ani11061792. [PMID: 34203963 PMCID: PMC8232619 DOI: 10.3390/ani11061792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Generally, Korean Hanwoo males produced under a 24-month production cycle (PROD24) are evaluated as a part of the progeny test program. However, there is little information on other males outside the PROD24, such as those raised under a 30-month production cycle (PROD30) for higher profits. Therefore, we investigated PROD30 males for important carcass traits (carcass weight, eye muscle area, backfat thickness, and marbling score) using a reasonably large dataset to understand their genetic merit. To do so, we estimated the genetic parameters of traits using animal model. Our analysis revealed moderate to high heritability values for the studied traits. The marbling score was found to be highly heritable at 0.56. The genetic correlation between traits was mostly moderate to low, and the backfat thickness was poorly correlated with the marbling score. These results are consistent with many previous reports on PROD24. Our study suggests that PROD30 and PROD24 males might have somewhat similar genetic potential, as well as similar genetic backgrounds. Thus, it could be concluded that there is further scope for PROD30 males to improve Hanwoo males’ overall prediction accuracy, especially under a genomic selection program, together with PROD24 males. Abstract Understanding animals’ genetic potential for carcass traits is the key to genetic improvements in any beef cattle. In this study, we investigated the genetic merits of carcass traits using Hanwoo males raised in a 30-month production system (PROD30). We achieved this using a dataset comprising 6092 Hanwoo males born between 2005 and 2017 and measures of four carcass traits (carcass weight, CWT; eye muscle area, EMA; backfat thickness, BFT; and marbling score, MS). Genetic parameters were estimated using a multiple-trait animal model through the AIREMLF90 program. According to the multiple-trait model, the h2 of CWT, EMA, BFT, and MS were 0.35 ± 0.04, 0.43 ± 0.05, 0.48 ± 0.05, and 0.56 ± 0.05, respectively. The strongest genetic correlation (rg) was obtained between CWT and EMA (0.49 ± 0.07), whereas it was negligible between CWT and BFT. EMA and MS were also moderately correlated, whereas there was a relatively low negative correlation between EMA and BFT (−0.26 ± 0.08). Our study revealed a consistent indirect genetic improvement in animals from 2005 onwards. Although Hanwoo improvement has mainly focused on males under a 24-month production cycle, we observed PROD30 males to have somewhat similar genetic potential. Our results provide useful insights into the genetic merits of PROD30 males for the first time, which may facilitate future studies on them and their integration into the Hanwoo National Evaluation for genomic selection.
Collapse
|