1
|
Tan Y, Gan M, Shen L, Li L, Fan Y, Chen Y, Chen L, Niu L, Zhao Y, Jiang A, Jiang D, Zhang S, Zhu L. Profiling and Functional Analysis of Long Noncoding RNAs and mRNAs during Porcine Skeletal Muscle Development. Int J Mol Sci 2021; 22:ijms22020503. [PMID: 33419093 PMCID: PMC7825455 DOI: 10.3390/ijms22020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
Gene transcripts or mRNAs and long noncoding RNAs (lncRNAs) are differentially expressed during porcine skeletal muscle development. However, only a few studies have been conducted on skeletal muscle transcriptome in pigs based on timepoints according to the growth curve for porcine. Here, we investigated gene expression in Qingyu pigs at three different growth stages: the inflection point with the maximum growth rate (MGI), the inflection point of the gradually increasing stage to the rapidly increasing stage (GRI), and the inflection point of the rapidly increasing stage to the slowly increasing stage (RSI). Subsequently, we explored gene expression profiles during muscle development at the MGI, GRI and RSI stages by Ribo-Zero RNA sequencing. Qingyu pigs reached the MGI, GRI and RSI stages at 156.40, 23.82 and 288.97 days of age with 51.73, 3.14 and 107.03 kg body weight, respectively. A total of 14,530 mRNAs and 11,970 lncRNAs were identified at the three stages, and 645, 323 differentially expressed genes (DEGs) and 696, 760 differentially expressed lncRNAs (DELs) were identified in the GRI vs. MGI, and RSI vs. MGI, comparisons. Functional enrichment analysis revealed that genes involved in immune system development and energy metabolism (mainly relate to amino acid, carbohydrate and lipid) were enriched at the GRI and MGI stages, respectively, whereas genes involved in lipid metabolism were enriched at the RSI stage. We further characterized G1430, an abundant lncRNA. The full-length sequence (316 nt) of lncRNA G1430 was determined by rapid amplification of cDNA ends (RACE). Subcellular distribution analysis by quantitative real-time PCR (qRT-PCR) revealed that G1430 is a cytoplasmic lncRNA. Binding site prediction and dual luciferase assay showed that lncRNA G1430 directly binds to microRNA 133a (miR-133a). Our findings provide the basis for further investigation of the regulatory mechanisms and molecular genetics of muscle development in pigs.
Collapse
Affiliation(s)
- Ya Tan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, China
| | - Yuan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Ying Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Dongmei Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Correspondence: (S.Z.); (L.Z.); Tel.: +86-28-8629-1133 (S.Z. & L.Z.)
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Correspondence: (S.Z.); (L.Z.); Tel.: +86-28-8629-1133 (S.Z. & L.Z.)
| |
Collapse
|
2
|
Xing K, Zhao X, Ao H, Chen S, Yang T, Tan Z, Wang Y, Zhang F, Liu Y, Ni H, Guo Y, Hou Z, Wang C. Transcriptome analysis of miRNA and mRNA in the livers of pigs with highly diverged backfat thickness. Sci Rep 2019; 9:16740. [PMID: 31727987 PMCID: PMC6856533 DOI: 10.1038/s41598-019-53377-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
Fat deposition is very important in pig production, and its mechanism is not clearly understood. MicroRNAs (miRNAs) play critical roles in fat deposition and energy metabolism. In the current study, we investigated the mRNA and miRNA transcriptome in the livers of Landrace pigs with extreme backfat thickness to explore miRNA-mRNA regulatory networks related to lipid deposition and metabolism. A comparative analysis of liver mRNA and miRNA transcriptomes from pigs (four pigs per group) with extreme backfat thickness was performed. We identified differentially expressed genes from RNA-seq data using a Cufflinks pipeline. Seventy-one differentially expressed genes (DEGs), including twenty-eight well annotated on the porcine reference genome genes, were found. The upregulation genes in pigs with higher backfat thickness were mainly involved in fatty acid synthesis, and included fatty acid synthase (FASN), glucokinase (GCK), phosphoglycerate dehydrogenase (PHGDH), and apolipoprotein A4 (APOA4). Cytochrome P450, family 2, subfamily J, polypeptide 34 (CYP2J34) was lower expressed in pigs with high backfat thickness, and is involved in the oxidation of arachidonic acid. Moreover, 13 differentially expressed miRNAs were identified. Seven miRNAs were associated with fatty acid synthesis, lipid metabolism, and adipogenic differentiation. Based on comprehensive analysis of the transcriptome of both mRNAs and miRNAs, an important regulatory network, in which six DEGs could be regulated by differentially expressed miRNAs, was established for fat deposition. The negative correlate in the regulatory network including, miR-545-5p and GRAMD3, miR-338 and FASN, and miR-127, miR-146b, miR-34c, miR-144 and THBS1 indicate that direct suppressive regulation may be involved in lipid deposition and energy metabolism. Based on liver mRNA and miRNA transcriptomes from pigs with extreme backfat thickness, we identified 28 differentially expressed genes and 13 differentially expressed miRNAs, and established an important miRNA-mRNA regulatory network. This study provides new insights into the molecular mechanisms that determine fat deposition in pigs.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xitong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaokang Chen
- Beijing General Station of Animal Husbandry, Beijing, 100125, China
| | - Ting Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - HeMin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Zhuocheng Hou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Ma X, Zheng C, Hu Y, Wang L, Yang X, Jiang Z. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. PLoS One 2015; 10:e0117294. [PMID: 25635834 PMCID: PMC4311982 DOI: 10.1371/journal.pone.0117294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/30/2014] [Indexed: 01/07/2023] Open
Abstract
Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF) content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P < 0.01), it also decreased the drip loss at 48 h post-mortem and the b* meat color value at 24 h post-mortem; supplementation with 1% dietary L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1) protein and negatively correlated with myosin heavy chain IIb (MyHC IIb) protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs.
Collapse
Affiliation(s)
- Xianyong Ma
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Chuntian Zheng
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Youjun Hu
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Li Wang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xuefen Yang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zongyong Jiang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- * E-mail:
| |
Collapse
|
4
|
Bakhtiarizadeh MR, Moradi-Shahrbabak M, Ebrahimie E. Underlying functional genomics of fat deposition in adipose tissue. Gene 2013; 521:122-8. [PMID: 23523858 DOI: 10.1016/j.gene.2013.03.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022]
Abstract
The objective of this study was to gain insight into the underlying mechanisms of fat deposition. Two sheep breeds with large fat-tail (Lori-Bakhtiari) and with thin-tail (Zel) were used as models. To determine important and key candidate lipid metabolism related genes, comparative genomic approaches were employed. Gene expression profiles of adipose tissues were analyzed in human, pig, and cattle by express sequence tag (EST) analysis. EST analysis determined 65, 102 and 125 transcripts in human, pig and cattle respectively with at least 10 fold over-expression in the adipose tissue. Based on our comparative functional genomic analysis, seven genes were more abundant and common in investigated mammalian adipose tissues promising a conserved novel gene network in mammalian lipid metabolism. The candidate genes including fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), Stearoyl-CoA desaturase (SCD) and Lipoprotein lipase (LPL) were selected for further gene expression investigation within two sheep breeds. The real time PCR results showed that among the genes tested, FABP4 was expressed at higher levels than the others. The expression of FABP4 was significantly higher in the fat-tail of Lori-Bakhtiari than in the fat-tail and visceral adipose tissues of Zel (P<0.05). The findings suggest that the FABP4 gene expression in the fat-tail is an important index of fat deposition.
Collapse
|
5
|
Wu T, Zhang Z, Yuan Z, Lo LJ, Chen J, Wang Y, Peng J. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. PLoS One 2013; 8:e53181. [PMID: 23301040 PMCID: PMC3536781 DOI: 10.1371/journal.pone.0053181] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/26/2012] [Indexed: 02/04/2023] Open
Abstract
Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenhai Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Zhangqin Yuan
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|